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Abstract 

An economical benchtop 3D bioprinter with < $300 price point is being designed, built, and 

tested for ubiquitous deployment and use in high school science laboratories. This device enables 

students to 3D print structures from soft materials – including living cells – in Liquid-Like Solid 

(LLS) media to create artifacts of educational interest, particularly for biological sciences, that 

cannot be easily fabricated through conventional 3D printing or other means. To benchmark and 

validate the prototype bioprinter’s functions, a calibration object is needed that illustrates key 

capabilities. The proposed 3D bioprinter calibration object, 3DJelly, takes < 30 minutes to print 

in LLS and includes the following critical bioprinting features: 1) joining of two parts, 2) 

capsular structure, 3) controlled feature spacing, 4) modulated layer thickness, 5) one structure 

encapsulated in another, 6) curved tubes, and 7) mid-print material change. These attributes were 

demonstrated by creating the 3DJelly bioprinting calibration object on an established bioprinter 

at the University of Florida. 
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Introduction & Background 

3D bioprinting is a cutting-edge technology for fabricating from soft and organic materials 

structures not easily created through conventional 3D printing or other means.1-3 3D bioprinters 

have been used to create patient-specific neurosurgical models,4 tumor models, and miniature 

functioning organs such as kidneys.5 Much like how access to conventional filament deposition 

3D printing revolutionized middle school6 and high school STEM education,6 it is anticipated 

that 3D bioprinting will similarly positively impact K-12 biology instruction. Implementing 3D 

bioprinters in high schools will benefit teachers by enabling benchtop fabrication of new hands-

on teaching resources. STEM students will benefit through exposure to what today is a 

revolutionary new technique but, in the future, may be an essential skill for STEM field 

employment. Moreover, this tool will provide students real-world context for abstract 

engineering ideas, attracting and endearing them to STEM fields. Nationally, 57.3% of biological 

sciences bachelor’s degrees were earned by women, but women only accounted for 38.6% of 

bachelor’s degrees awarded in all STEM fields.7 The range of new fabrication abilities, 

especially in the biological and health sciences, afforded by 3D bioprinters could attract more 

female high school students to STEM fields creating a pipeline for their selection of and 

participation in college STEM majors. 

National Science Foundation funded S3ed corporation attempted to enter the secondary 

education market8 with a $5,000 3D bioprinter,9 but the firm has since gone dormant in this 

marketplace. Key factors for developing successful K-12 STEM curricula by transitioning 

technologies normally found at tech companies and universities to middle and high school labs 

are 1) relevance, 2) accessibility, 3) affordability of the teaching tool or method.10-14 While 

universities and biomedical companies require advanced and expensive bioprinters, the 

capabilities needed for high school applications are much less complex; an opportunity to 

dramatically reduce cost. While a $5,000 tool is out of reach of most K-12 schools, a much more 

realistic 3D bioprinter entry point is $300 as evidenced by the wide adoption of the ~$200 Ender-

3 3D printer in American classrooms. We show here that a viable 3D bioprinter can be built for 

less than $300. 

This work emphasizes the importance of prioritizing hands-on learning tools for high school 

STEM education and introducing students to forward-looking fabrication tools that will 1) 

further their interest in STEM careers, 2) inspire STEM passion projects carried out both in class 

and on their own, and 3) provide opportunities to emulate open-ended and creative problem 

solving expected of STEM students in college. 

Methods & Materials 

Our approach to developing a 3D bioprinter that is 1) relevant, 2) accessible, and 3) affordable 

for high schools is tasking a high school student to lead its design, construction, and testing. We 

capitalize on the College Board’s AP Capstone Diploma™ program where high school students 

complete college-level academic research in a field of their choosing and are assessed on their 

ability to apply critical thinking, research, and collaboration skills.15 We use as an design 

inspiration custom 3D bioprinters developed for research at University of Florida (UF), which 

print soft structures into a Liquid-Like Solid (LLS) matrix. Optically clear LLS provides 
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structural support for suspended features while enabling near-real-time imaging via confocal 

microscopy to observe and record printing in progress.16 

Our design methodology is the Ship Of Theseus technique17 used previously in architecture 

education,18 mathematics research education,19 and creating engineering education laboratory 

kits.20,21 Ship Of Theseus proceeds by identifying essential product subsystem functions then 

purchasing Off-The-Shelf (OTS) components to satisfy each identified function. These OTS 

components are stitched together into a discordant “Frankenstein” product that functions but 

lacks subsystem synergy. As the overall product is tested, it becomes better understood, and each 

OTS component is then systematically replaced with a well-designed custom element until none 

of the discordant original OTS parts remain and the product’s final form is revealed. 

Figure 1 illustrates the “Frankenstein” 3D bioprinter already constructed; the original unmodified 

Ship Of Theseus. It is assumed that any high school deploying a 3D bioprinter would supply its 

own computer capable of running MS Windows-compatible software. This 3D bioprinter system 

is built around, an IQCrew STEM Science Discovery 40X-500X Inverted Microscope ($60 retail 

at time of writing). The microscope’s optical objectives observe samples from underneath 

allowing users to visualize structures and cells being printed without the deposition tip blocking 

the visual field. A 5.0 MP digital camara (included with the microscope) replaces the scope’s 

eyepiece while included driver software allows users to capture still and video images of the 

microscope’s view field for near-real-time visualization, just like UF’s 3D bioprinter. 

 

Figure 1. Version 1 of the < $300 3D bioprinter for high schools was designed following the Ship 

Of Theseus product development technique. 
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The next essential subsystem is a Vevor X-Y plotter ($120 retail at time of writing) which 

provides planer movement of the deposition tip. This plotter does not provide Z-axis motion, 

rending this first bioprinter iteration only capable of automatic plotting in two dimensions. The 

third spatial plotting dimension could be enabled by placing the plotter on a lab jack and 

changing deposition depth manually with each printed layer. Alternatively, an inexpensive 

conventional 3D printer like Ender-3 could have been adapted instead of an X-Y plotter to 

automate Z-axis motion. However, for a first Ship Of Theseus iteration the 2D plotter provides 

adequate framework to inspire later custom X-Y-Z motion design. Moreover, Vevor X-Y plotter 

runs on open source GRBL software platform, making it easy to convert drawings in MS 

PowerPoint into G-code toolpaths without need for 3D modeling or slicing software. 

The plotter’s pen-holding mechanism was replaced with a custom deposition tip holder part (see 

Figure 1 inset) that passes bio ink through a 1.3-cm-long hypodermic luer lock syringe needle to 

deposit print material. The deposition tip holder also contains two through holes connecting the 

part to the X-Y plotter and a threaded hole to mount the plotter’s belt cog. While the part shown 

in Figure 1 was machined from aluminum, we also successfully tested an identical replica made 

by conventional 3D printing in PTEG (filament cost < $1). In future production-scale systems, 

needed biocompatibility for high school applications will determine ultimate material choice. 

For deposition tips, a 120-piece pack of Brostown 1/2” (1.3 cm) dispenser needles with luer 

locks was purchased ($11 at time if writing) containing 14-, 15-, 18-, 20-, 21-, 22-, 23-, 25-, 27-, 

and 30-gage blunt tips. We will experiment in the future with the range of tip diameters, fluid 

volume flow rates, and deposition tip velocity through the LLS to identify the most promising 

combinations of these variables for high-quality bioprinting printing. 

Bio ink forced through the deposition tip is deposited into an LLS-filled clear petri dish. As 

described elsewhere, LLS is like a collection of fluid-filled microbeads that behave like liquid 

water when sheared. Once bio ink is deposited, static LLS behaves like an amusement park ball 

pit, holding in suspension printed soft materials deposited therein.22 A commonly available fluid 

with LLS microstructure is hand sanitizer. It can be found both in oil-based and water-based 

generic brands for about $2 per bottle. 

The final essential hardware element is a syringe pump, which pushes bio ink out the deposition 

tip needle by compressing a conventional liquid-filled disposable plastic syringe. The syringe is 

connected via luer fittings and a flexible plastic tube to the deposition tip holder part described 

above. The syringe pump pictured in Figure 1 is a Razel Scientific R-99-EJ variable speed model 

borrowed from UF and outside the target price range. Once a viable syringe pump compression 

speed range was empirically determined, this item was replaced by a Razel Model A fixed speed 

syringe pump purchased from a surplus supplier ($25). This pump accommodates disposable 

plastic syringes ranging from 10 mL to 60 mL ($1 each). Bio ink volume flow rate from the 

deposition tip can be varied by swapping in different diameter syringes. Following the Ship Of 

Theseus iterative design approach, the syringe pump is the first subsystem that will be replaced 

with an inexpensive custom-built alternative possessing both variable speed and ability to be 

reversed. Reversibility allows bio ink and cells deposited in LLS to be later retrieved for 

additional assays and analyses. Multiple literature examples show researchers are building their 

own custom variable syringe pumps for less than $100.23,24 
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In addition to the major and minor component costs described above, we estimate an additional 

$15 spent on tubing, plastic fittings, and accompanying parts. The bio ink itself is a colloidal 

suspension which we use in such tiny volumes that its cost is trivial. Summing the component 

costs reveals the total price of materials for the described early prototype 3D bioprinter: $235. 

This cost is below the $300 threshold deemed viable for wide adoption of this 3D bioprinter as a 

successful commercial product in the middle and high school laboratory equipment marketplace. 

Moreover, through application of design customization, Design For Manufacturing, volume 

materials purchasing discounts, and other cost reducing innovations, the cost to create this 

product could be driven even lower! Lastly, this version can be modified to mate with any 

syringe pump, inverted microscope, or X-Y plotter a school may already have on hand. Thus, 

schools with common lab equipment on-hand would not need to buy all the 3D bioprinter pieces 

in order to build one. OTS material choices for this early 3D bioprinter iteration were driven 

cost, accessibility, and functionality. Following the Ship Of Theseus design approach, the final 

$300 3D bioprinter will contain an open-source X-Y-Z motion stage, deposition tip holder, and 

syringe pump that can be built by high school students using parts that are either 3D printed or 

standardized and easily accessible from an engineering supplier like McMaster-Carr. 

Calibration & Testing 

Yes, a viable prototype 3D bioprinter can be built for less than $300, but what are its capabilities, 

repeatability, and print quality? How are these performance metrics assessed? All the subsystem 

elements of the Version 1 prototype have been shown to work independently. The immediate 

next step is to print a pattern of horizontal bio ink lines in LLS on the stage of the IQCrew 

Inverted Microscope stage while imaging the process in real time to show all the elements 

function together as a viable bioprinter. 

 

Figure 2. Time lapse printing of 3DJelly, a 3D bioprinting calibration object by UF. 

To further test and evaluate the capabilities of any 3D bioprinter, a 3DBenchy equivalent for 

bioprinting is needed. 3DBenchy is a proprietary, copyrighted 3D computer model and 

calibration object designed to test the capabilities of 3D printers through difficult-to-print 

features.25 For bioprinting, we propose use of 3DJelly, shown in Figure 2, which takes UF < 30 

minutes to print in LLS and includes the following critical bioprinting capability features: 1) 
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joining of two parts, 2) capsular structure, 3) controlled feature spacing, 4) modulated layer 

thickness, 5) one structure encapsulated in another, 6) curved tubes, and 7) mid-print material 

change. Using 3DJelly as a benchmark for the $300 bioprinter will demonstrate which essential 

functions it can perform and quantify how well these capabilities are executed. The $300 3D 

brioprinter’s performance on the 3DJelly assessment will be presented in a future paper. 

Conclusions & Next Steps 

While our goal is to produce a 3D bioprinter for secondary educational institutions with as many 

capabilities as systems used in research universities or industry, at a minimum 3D bioprinters 

targeted for high school classrooms must be 1) relevant, 2) accessible, 3) affordable to be viable. 

The initial prototype $300 3D bioprinter described here will be evaluated at West Port High 

School by inviting teachers and students in STEM fields to propose projects for the 3D bioprinter 

that are beneficial in their classes. The first such project is already underway. A human vein 

replica made from clear soft PDMS material and capable of carrying artificial blood will be 

printed. This model will be used in the West Port High School phlebotomy course allowing 

students to practice needle skills with a vein easily visible below the clear artificial tissue surface 

before moving on to mannequins with hidden veins. 

Analysis of the 3D bioprinter’s utility will include both quantitative and qualitative measures 

consisting of a cost benefit analysis, a 10-point checklist of functionalities, and an end-user 

survey. To measure affordability, the engineering program’s budget will benchmark and generate 

a cost-benefit analysis to determine its cost efficiency. The functionality of the $300 3D 

bioprinter will be measured by printing the 3DJelly benchmark object and observing its features 

relative to the same object created using a research-quality UF 3D bioprinter. 
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