
2022 ASEE Southeastern Section Conference

© American Society for Engineering Education, 2022

Synthesis vs. Simulation: Developing a Hardware Interrupt

System for the Instructional Processor

Ronald Hayne
The Citadel

Abstract

The Instructional Processor has been developed as a digital system design example. The

architecture is modelled in VHDL and can be simulated and synthesized to an FPGA using

Xilinx design tools. The goal of this project was to add a hardware interrupt system to the

enhanced microcontroller. The interrupt system includes a hardware timer and a serial UART.

The design process highlighted several important differences between what can be demonstrated

via simulation and what can be synthesized to hardware. The FPGA microcontroller was tested

using a time-multiplexed display and a serial RFID card reader. The expanded design example

has been added to a graduate computer architecture course, which uses VHDL and FPGAs. The

project continues to achieve its goal as a valuable instructional tool.

Keywords

VHDL, FPGA, UART, RFID

Introduction

Teaching digital design involves the use of many examples including counters, registers,

arithmetic logic units, and memory. The design of a computer processor combines these

components into an integrated digital system. The Instructional Processor has been developed as

a design example in an advanced digital systems course at The Citadel1,2. The simple

architecture provides sufficient complexity to demonstrate fundamental programming concepts.

The entire system is modeled in VHDL (VHSIC Hardware Description Language) and can be

simulated to demonstrate operation of the processor. Memory-mapped I/O (input/output)

provides the external interfaces necessary to demonstrate example microcontroller applications,

when synthesized to an FPGA (Field Programmable Gate Array).

Several VHDL models of processors exist, but some rely only on simulation to verify their

operation3. Others include FPGA prototyping to create hardware systems4-6, though some of

these are proprietary with limited visibility of internal functions6. Several of these systems also

include external interfacing such as UARTs (Universal Asynchronous Receiver Transmitter)5,6.

Another limitation is that none of these systems include discussion or implementation of

interrupts, which are included in most commercial processors.

A hardware interrupt is a signal sent by a device requesting attention of the processor. The

current program is temporarily suspended to service the request. Responding to interrupts

instead of polling status flags allows the processor to multi-task between several external

devices. The goal of this project was to add a hardware interrupt system to the Instructional

Processor, including an internal timer and a serial UART. The expanded design example

2022 ASEE Southeastern Section Conference

© American Society for Engineering Education, 2022

provides an in-depth look into the implementation of more advanced capabilities. Other

important teaching points, highlighted by the design process, are the differences between what

can be demonstrated via simulation and what can be synthesized to actual hardware.

Interrupt System

The first challenge was how to add an interrupt system to the Instructional Processor without

changing the existing instruction set architecture. The goal was to make the design modular so

that sub-systems could be added as necessary to provide expanded capabilities. Maintaining a

common core architecture meant that tools like the IP Assembler1 could be used as-is without

pushing changes back through the design.

The first sub-system developed was a hardware timer capable of generating interrupt signals.

The registers and memory interface for Timer0 are shown in the center right of Figure 1. The

timer is controlled via the T0CON register which is memory-mapped to address MEM[0x00A].

The timer can be enabled and disabled with the TMRON bit and the timing duration can be set

via a 3-bit SCALE parameter. The last bit is used to read and write the interrupt flag (T0IF).

T0IE

GIE

ICON

In

MEMORY

Write

ICON

Write

T0CON T0CON T0IF

Timer0

TMR0

Write

TMR0

TMR0

Out/In

3
16

ICON

Load

ICON

TxIERxIE

ICON

Interrupt

Reset

Set

GIE

Clear

GIE

T0IF

RDRF

TDRE

T0IF

Out

T0IFSCALETMRON

5

Load

T0CON

T0CON

T0IF

TMR0

In/Out

T0CON

In

Load

TMR0

Reset

RDRF Out

TDRE Out

UART

GIF

Figure 1. Interrupt System with Timer0, UART, and Memory Interface

Timer0 is a 16-bit counter register (TMR0) which is also memory-mapped. The register can be

read and written to determine the timing interval. When TMR0 reaches maximum, it resets back

to zero and sets the T0IF. When implemented on a BASYS3 FPGA Board, the system clock is

100 MHz7. Combined with the SCALE parameter, the interrupt time can be varied from

milliseconds to seconds.

2022 ASEE Southeastern Section Conference

© American Society for Engineering Education, 2022

The second sub-system is a UART that was previously adapted to the Instructional Processor8.

The UART enables serial communication with the FPGA microcontroller at baud rates

configured from 300 to 38,400 bits per second. The system is monitored via two status flags,

RDRF (receiver data register full) and TDRE (transmit data register empty). These flags can

now be integrated into the new interrupt system.

The interface for the new interrupt system is shown in the lower left of Figure 1. The ICON

(interrupt control) register is used to enable the three possible interrupts from the receiver

(RxIE), transmitter (TxIE), and timer (T0IE). There is also a global interrupt enable (GIE),

which is cleared during an interrupt and set again by the return from subroutine (RTN)

instruction. The individual enable signals are combined with the interrupt flags to trigger the

global interrupt flag (GIF), which alerts the processor that there is a valid interrupt request.

The next challenge was how to implement an interrupt vector within the constraints of the

existing assembler. The memory map for the Instructional Processor, on the left of Figure 2,

shows designated sectors for I/O, Data, and Programs. The sample assembly language code on

the right shows how assembler directives (.define, .data, and .program) are used to map programs

and data to the appropriate memory locations. The interrupt vector (INTV), pointing to the

interrupt service routine (ISR), has been fixed at MEM[0x081] and the MAIN program is

accessed via the unconditional branch (BRA) at the START of program memory.

I/O

Data

Program

MEMORY

000

00F

010

07F

080

FFF

.define LED [1] ;LEDs

.define ICON [9] ;Interrupt Control

.define T0CON [0xA] ;Timer0 Control

.data ;0x010

INTV 0x81 ;Address of ISR

.program ;0x080

START: BRA MAIN ;Goto Main

ISR: ADD 1, R2 ;Inc LEDs

 MOVE R2, LED

MAIN: MOVE 1, R0 ;T0IE

 MOVE R0, ICON

Figure 2. Memory Map and Assembly Language Program

VHDL Simulation and Synthesis

The new sub-systems were next modelled in VHDL and integrated into the existing Instructional

Processor. Xilinx9 design tools were used to simulate the models for functional verification

before they were synthesized to FPGA hardware.

When designing Timer0 there were several options to be considered. The timer needs to be able

to respond to both the system clock to load the registers and a separate timing clock determined

2022 ASEE Southeastern Section Conference

© American Society for Engineering Education, 2022

by the SCALE parameter. Taking a software-minded approach implies simply making the timer

register conditional on both clocks, which certain simulation tools will allow and seem to verify

the desired behavior. However, an important distinction is that VHDL is a hardware description

language and not all simulated behavior can be synthesized to hardware.

The target FPGA on the BASYS37 does not support multiple clock drivers and the Timer0

system needed to be redesigned. This iterative design process is an important teaching point for

the students and emphasizes the need to understand the CAD (computer aided design) tools and

hardware system constraints. An updated model was developed using an enable (EN) driven by

the SCALE parameter and a separate counter (CTR). A small sample of the VHDL model, which

was successfully simulated and synthesized, is show in Figure 3.

 if rising_edge(CLK) then

 if RESET = '1' then

 CTR <= "000000000";

 elsif TMRON = '1' and T0IF = '0' then -- Disable counter on interrupt

 CTR <= CTR + 1;

 end if;

 if RESET = '1' then

 TMR0 <= "00000000000000000";

 SCALE <= "000";

 TMRON <= '0';

 elsif Load_TMR0 = '1' then -- Load Timer0

 TMR0(15 downto 0) <= TMR0_In;

 elsif Load_T0CON = '1' then -- Timer0 Control

 TMR0(16) <= T0CON_In(0); -- Interrupt flag

 SCALE <= T0CON_In(3 downto 1); -- Prescale

 TMRON <= T0CON_In(4);

 elsif EN = '1' then -- Enable: increment Timer0

 TMR0 <= TMR0 + 1;

 end if;

 end if;

Figure 3. VHDL Model for Timer0

Another example of the differences between simulation and synthesis is highlighted in the

modification of the instruction fetch cycle. If a valid interrupt request is indicated by the global

interrupt flag, then the processor fetches the instruction indicated by the interrupt vector, rather

than the current program counter. Tracking the separate fetch sequences required use of an

interrupt in-progress flag during the three clock steps. Incorrect modelling of this flag using

variables vs. signals or combinational vs. sequential processes produced simulation results that

did not exhibit correct timing behavior in synthesized hardware.

Multi-Tasking Example

After independent testing of the interrupt sub-systems, an example microcontroller application

was chosen to test the hardware interfaces and demonstrate the new multi-tasking capabilities. A

Parallax RFID (Radio Frequency IDentification) Card Reader10 senses passive transponder tags

and transmits serial data to the UART. The ASCII tag ID can be stored in memory and then

displayed on the four seven-segment displays on the BASYS3 board. The displays are tied

together into one common anode circuit node, but the LED cathodes provide four separate

2022 ASEE Southeastern Section Conference

© American Society for Engineering Education, 2022

enables. The displays must be time-multiplex scanned at a frequency above 60 Hz7. The

hardware set-up is shown in Figure 4. Interconnects are power (red), ground (black), enable

(green), and serial data (yellow).

Figure 4. RFID Card Reader and BASYS3 FPGA Board

The application example requires students to develop interrupt service routines for the UART

and Timer0. The UART will generate an interrupt each time a byte of serial data is received

from the RFID antenna. Timer0 must be configured to generate interrupts for the time-multiplex

scanning of the seven-segment displays. The systems operate independently and require careful

deconfliction of resources, since one can’t predict where in a program an interrupt will occur.

This hardware example provides hands-on experience that can’t be replicated via simulation

alone.

Results and Conclusions

This project successfully added a hardware interrupt system to the Instructional Processor.

Timer0 was developed to provide periodic interrupt signals, which can be used for applications

such as time-multiplex scanning of displays. The previously developed UART was adapted to

the new interrupt sub-system, providing asynchronous serial communication with external

devices. The interrupt system was developed with independent enables to control three different

interrupt sources. The interrupt vector was added to the existing memory map without

modification of the instruction set architecture.

RFID Antenna

RFID Tags

BASYS3 FPGA Board

Tag ID

2022 ASEE Southeastern Section Conference

© American Society for Engineering Education, 2022

The iterative design process allows students to verify functional behavior via VHDL simulation

with the additional teaching points of the differences from hardware synthesis. A key insight is

the need to understand these CAD tools and constraints of the target hardware system. A digital

system engineer needs to be able to go beyond classroom models and gain experience with

implementation on hardware platforms like FPGAs. Students surveys acknowledge benefits

from this expanded design experience.

An RFID microcontroller application was chosen to demonstrate the multi-tasking capabilities of

the new interrupt system. Students experience additional design challenges in the development

of multiple interrupt service routines. Simulation alone is not sufficient to provide insights into

complexities such as deconfliction of resources for independent hardware systems.

The design and testing of the interrupt system for the Instructional Processor has been added to a

new graduate computer architecture course at The Citadel. The course uses VHDL modelling

and simulation for the design of a simple computer processor with new capabilities. Synthesis to

FPGA hardware provides hands-on experience with a functional microcontroller that can be

interfaced with external devices. The end result of this project is an expanded processor design

example that continues to achieve its goal as a valuable instructional tool.

References

1 Hayne, Ronald and John Moore, Jr., “Evolution of the Instructional Processor,” Computers in Education

Journal, ASEE, Vol. 6 No. 4, October - December 2015.

2 Hayne, Ronald, “Design of an Instructional Processor,” Supplement to: Roth, Charles and Lizy John,

Digital Systems Design Using VHDL, Third Edition, Cengage Learning, Boston, MA, 2018. [Online].

Available: http://academic.cengage.com/resource_uploads/downloads/1305635140_559956.pdf.

3 Hwang, Enoch, Digital Logic and Microprocessor Design with VHDL, Thompson, Toronto, Canada, 2006.

4 Harris, David and Sarah Harris, Digital Design and Computer Architecture, Morgan Kaufmann, San

Francisco, CA, 2007.

5 Unsalan, Cem and Bora Tar, Digital System Design with FPGA, McGraw Hill, New York, NY, 2017.

6 Chu, Pong, FPGA Prototyping by VHDL Examples, Wiley, Hoboken, NJ, 2017.

7 BASYS 3 FPGA Board Reference Manual, Digilent, Inc., April 2016.

8 Hayne, Ronald “Implementing Serial Communication for the Instructional Processor,” Proceedings ASEE

Virtual Conference, June 2020.

9 Vivado Design Suite User Guide, UG892, v2019.1, Xilinx, Inc., 2019.

10 RFID Card Reader, Serial (#28140), v2.2, Parallax, Inc., March 2010.

Ronald Hayne

Ron Hayne is a Professor in the Department of Electrical and Computer Engineering at The

Citadel. He received his B.S. in Computer Science from the United States Military Academy, his

M.S. in Electrical Engineering from the University of Arizona, and his Ph.D. in Electrical

Engineering from the University of Virginia. Dr. Hayne’s professional areas of interest include

digital systems design, computer architecture, and hardware description languages. He is a

retired Army Colonel with experience in academics and Defense laboratories.

http://academic.cengage.com/resource_uploads/downloads/1305635140_559956.pdf

