A Multicourse Effort for Instilling Systematic Engineering Problem Solving Skills Through the Use of a Mathematic Computer Aided Environment

Rogelio Luck ${ }^{1}$ and B K. Hodge

Abstract

This paper describes a coordinated, multicourse effort in the Mechanical Engineering (ME) Department at Mississippi State University (MSU) to inculcate disciplined/systematic engineering problem solving skills through the use of mathematical worksheets such as those found in Mathcad. The advantage of these worksheets is that, with proper guidance, students can learn a systematic methodology that allows for a better understanding on how to approach and solve engineering problems as compared to using pencil, paper, and graphing calculators. For ME students at MSU, these worksheets are required in three courses: Engineering Analysis, System Dynamics, and Energy Systems Design. A significant advantage to sequencing courses in this manner is that students spend more time (and effort) in engineering functions (formulation, verification, and validations) than in the arithmetic function (primarily accomplished by Mathcad). Details, examples, and assessment of effectiveness are discussed in the paper.

Keywords: Problem solving, computer aided environment, and engineering approach.

Introduction

One important objective in engineering education is to inculcate in the students a systematic and practical approach to problem solving. Traditionally, this has been largely accomplished through the use of homework following guidelines for problem formulation and solution using engineering paper and handheld calculators. However, the widespread availability of laptops and user-friendly mathematical computer solvers is displacing the use of calculators in favor of worksheets from mathematical CAD programs such as Mathcad and Maple. The features available in these programs include automatic recalculation, copy, pasting, and line editing of equations and text, symbolic processing, automatic handling of engineering units, and instantaneous graphic capabilities. Students can spend more time and effort in engineering functions such as problem formulation, solution, verification, and validation rather than recalculating results and plots each time a mistake is found or a parameter is perturbed.

On the other hand, without careful guidance, the use of these worksheets can quickly degenerate into careless and pointless use of equation solvers, displaying the solutions using a mismatched set of units, and generating the wrong algebraic solutions. Also, often, the software itself is not fully debugged and displays erroneous results. Thus, the students must be carefully coached on the correct use of these mathematical worksheets. This is achieved by raising the expectations on the problem formulation/solving documentation procedure plus an added emphasis on verification and validation ($\mathrm{V} \& \mathrm{~V}$) of the results. A benefit of $\mathrm{V} \& \mathrm{~V}$ is that students spend more time rethinking the entire solution process in terms of the physical meaning of the results and the mathematical well-posedness. The genesis of the evolution of the authors' realization of the pedagogical impacts of mathematical computer solvers on engineering education is documented in Hodge and Taylor (1998), Hodge (2005), and Hodge and Luck (2006).

[^0]At the ME department at MSU, these worksheets are used in three courses: Engineering Analysis (EA), System Dynamics (SD), and Energy Systems Design (ESD). Disciplined, systematic problem solving skills are inculcated through the use of strictly enforced homework format in EA and SD. The homework format consists of clearly formulated Given, Find, Solution, and Verification/Validation sections. Pictures and sketches are introduced into the worksheets by copying and pasting from computer generated sketches or drawings, by browsing the internet, or by scanning. Students are required to carefully read the problem statement and summarize this information in the Given section of the homework. The variables to be found or the design requirements are to be listed in the Find section. It is interesting that the Given and Find sections of the homework format are in congruence with the Given and Find formulations in Mathcad for solutions of algebraic and differential equations. This helps reinforce the importance of describing the problems in a well-posed manner. The Verification/Validation section is considered of equal importance as the Solution section and is addressed and graded accordingly. Students are required to show that their answers are reasonable by checking that the units are consistent, the magnitudes are reasonable, and the models/equations behave as expected. The physical units processing as well as the 2D and 3D plotting features of Mathcad are heavily used in these sections. Finally, the ESD course takes the previously acquired problem solving skills one step further into engineering design scenarios.

The following sections will describe the philosophy behind the courses and details and examples of typical homework.

Engineering Analysis (EA) Course

Philosophy behind the Engineering Analysis (EA) course:

A main objective behind the EA course is to consolidate the mathematical skills acquired during the freshman and sophomore years while emphasizing their use in posing and solving engineering problems. This is partly accomplished through the process of learning how to use Mathcad. Students are introduced to Mathcad functionality by demonstrating how to define functions, perform differentiation and integration, simplify systems of algebraic and trigonometric expressions, perform series analysis, find optimal solutions, fit equations to data, and solve differential equations. They are asked to verify and interpret the results using units, magnitudes, and graphical comparisons. This process of verification and interpretation allows them to focus on the definition and meaning of the mathematical expressions used to describe engineering problems.

Example 1

Figure 1 illustrates the typical homework format and how a Mathcad worksheet is used in a homework set to review basic concepts of integration and differentiation, and, more importantly, to introduce the process of verification. The same philosophy of verifying the results in order to review key mathematical concepts is used in several homework sets covering topics such as Taylor Series and truncation errors, root finding, maximization/minimization, and polynomial fitting.

Example 2

Figure 2 examines a homework problem where students practice how to setup a problem in matrix form and verify the solution. Given air flowrates in and out of a restaurant and carbon dioxide concentrations in the incoming air as well as carbon dioxide generation by smokers and by the kitchen grill, students are asked to find the equilibrium concentrations of carbon dioxide in each room in the restaurant. This time, the verification is based on an important engineering concept: conservation of mass. The idea here is to use basic understanding of equilibrium, compatibility, and energy and mass conservation equations to verify the solutions. Typically, students are asked to verify the consistency of the units of the results of the calculations. This is not done in this example as all parameters are defined using their respective units and Mathcad will not proceed with a calculation unless all units are consistent.

Problem 1.

Given : The function $f(x):=e^{\sin (x)} \cdot \cos (x)+1$.

Find: Use Mathcad to
a) Calculate the derivative of $f(x)$ when $x:=\frac{\pi}{4}$
b) Calculate the integral of $f(x)$ in the interval $0 \leq x \leq \pi$

Use mathcad graphic capabilities to verify the solutions.
Solution :

Answer a)
$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{x})=-0.42$

Answer b)
$\int_{0}^{\pi} f(x) d x=3.14$

Verification :

The validation consists in approximating the derivatives by the approximate slopes and the areas (integrals) by the areas of a box of height equal to the mean value in the interval of interest.
a)

The trace function was used to collect the following data from the plot on the left:
point $1 \quad \mathrm{x} 1:=0.737 \mathrm{y} 1:=2.45$
point 2: $\quad \mathrm{x} 2:=0.847$ y2 $:=2.40$
slope at $\mathrm{x}=\frac{\pi}{4} \quad$ Slope $:=\frac{\mathrm{y} 2-\mathrm{y} 1}{\mathrm{x} 2-\mathrm{x} 1}$
Slope $=-0.45$

Thus the slope left of -0.45 is quite close to the exact value of -0.42

Figure 1. Worksheet for Example 1.
b)

$$
\text { sqr }:=\left(\begin{array}{cc}
0 & 0 \\
\pi & 0 \\
\pi & 1 \\
0 & 1 \\
0 & 0
\end{array}\right) \quad \text { area1 }:=\binom{2.2}{.7} \quad \text { area2 }:=\binom{-.2}{2.5}
$$

Note that the area (X) bounded on the top by the red curve and on the bottom by $\mathrm{y}=2$ cancels out the area (X) bounded on the top by $y=0$ and the bottom by the red curve.

The area of the blue box is roughly equal to the area $f(z)$.

$$
\text { ApproxArea }:=1 \cdot \pi \quad \text { ApproxArea }=3.142
$$

Thus, the answer appears reasonable as it is quite close to the graphical approximation.

Figure 1. Concluded.

Given: The following schematic for Carbon Monoxide Distribution in a Restaurant

Monoxide Gas Distribution in a Restaurant

Find: a) steady state carbon monoxide concentration in each room
b) percent contribution in section 4 from smokers, grill, and outside air

Solution:

Labelling the volumetric flowrates and the concentrations of carbon monoxide.

$$
\begin{array}{lll}
\mathrm{E}_{1}:=30 \frac{\mathrm{~m}^{3}}{\mathrm{hr}} & \mathrm{Q}_{\mathrm{a}}:=250 \frac{\mathrm{~m}^{3}}{\mathrm{hr}} & \mathrm{Q}_{\mathrm{b}}:=100 \frac{\mathrm{~m}^{3}}{\mathrm{hr}} \quad \mathrm{Q}_{\mathrm{C}}:=200 \frac{\mathrm{~m}^{3}}{\mathrm{hr}} \quad \mathrm{Q}_{\mathrm{d}}:=150 \frac{\mathrm{~m}^{3}}{\mathrm{hr}} \\
\mathrm{E}_{2}:=15 \frac{\mathrm{~m}^{3}}{\mathrm{hr}} & \mathrm{C}_{\mathrm{a}}:=2 \frac{\mathrm{mg}}{\mathrm{~m}^{3}} & \mathrm{C}_{\mathrm{b}}:=2 \frac{\mathrm{mg}}{\mathrm{~m}^{3}} \\
\mathrm{E}_{3}:=30 \frac{\mathrm{~m}^{3}}{\mathrm{hr}} & \mathrm{~S}_{1}:=300 \frac{\mathrm{mg}}{\mathrm{hr}} & \mathrm{~S}_{3}:=1000 \frac{\mathrm{mg}}{\mathrm{hr}} \quad \mathrm{~S}_{5}:=3000 \frac{\mathrm{mg}}{\mathrm{hr}} \quad \mathrm{E}_{4}:=60 \frac{\mathrm{~m}^{3}}{\mathrm{hr}}
\end{array}
$$

The following equations represent the balance of the carbon dioxide flow in each room.
$Q_{a} \cdot C_{a}+S_{1}+E_{1} \cdot\left(C_{2}-C_{1}\right)-Q_{a} \cdot C_{1}=0$
$Q_{b} \cdot C_{b}+Q_{a} \cdot C_{1}+E_{1}\left(C_{1}-C_{2}\right)+E_{3}\left(C_{3}-C_{2}\right)-Q_{C} \cdot C_{2}-Q_{d} \cdot C_{2}+E_{2}\left(C_{4}-C_{2}\right)=0$
$Q_{C} \cdot C_{2}+E_{3}\left(C_{2}-C_{3}\right)-Q_{C} \cdot C_{3}+S_{3}=0$
$Q_{d} \cdot C_{2}+E_{2} \cdot\left(C_{2}-C_{4}\right)-Q_{d} \cdot C_{4}+E_{4} \cdot\left(C_{5}-C_{4}\right)=0$
$\mathrm{Q}_{\mathrm{d}} \cdot \mathrm{C}_{4}+\mathrm{E}_{4} \cdot\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)+\mathrm{S}_{5}-\mathrm{Q}_{\mathrm{d}} \cdot \mathrm{C}_{5}=0$

Figure 2. Worksheet for Example 2.

Solution using the inverse matrix method:
$\underset{\sim}{F}:=\left(\begin{array}{ccccc}-E_{1}-Q_{a} & E_{1} & 0 & 0 & 0 \\ Q_{a}+E_{1} & -E_{1}-E_{3}-Q_{C}-Q_{d}-E_{2} & E_{3} & E_{2} & 0 \\ 0 & Q_{C}+E_{3} & -E_{3}-Q_{C} & 0 & 0 \\ 0 & Q_{d}+E_{2} & 0 & -E_{2}-Q_{d}-E_{4} & E_{4} \\ 0 & 0 & 0 & Q_{d}+E_{4} & -E_{4}-Q_{d}\end{array}\right) \quad \underset{\sim}{R}:=\left(\begin{array}{c}-Q_{a} \cdot C_{a}-S_{1} \\ -Q_{b} \cdot C_{b} \\ -S_{3} \\ 0 \\ -S_{5}\end{array}\right)$
$\left(\mathrm{C}_{1}\right)$
$\mathrm{C}_{3}:=\mathrm{F}^{-1} \cdot \mathrm{R}$
C_{4}
$\left(\mathrm{C}_{5}\right)$
Answer a)

$\left.\mathrm{C}_{1}\right)$	(3.227)	
C_{2}	3.452	
C_{3}	$=$	7.8
C_{4}	.$\frac{\mathrm{mg}}{\mathrm{m}}$	
$\left(\mathrm{C}_{5}\right)$	$(22.947$	m^{3}

b) percentage contributions in Room \#4

```
coeffsinverse \(:=\mathrm{F}^{-1}\)
smoker \(:=\frac{\text { coeffsinverse }_{3,0} \cdot-\mathrm{S}_{1}+\text { coeffsinverse }_{3,2} \cdot-\mathrm{S}_{3}}{\mathrm{C}_{4}} \quad\) smoker \(=14.222 \cdot \%\)
grill := \begin{tabular}{l|} 
coeffsinverse \(_{3,4} \cdot-\mathrm{S}_{5}\) \\
\(\mathrm{C}_{4}\) \\
grill \(=62.649 \cdot \%\) \\
\hline
\end{tabular}
intake \(:=\frac{\text { coeffsinverse }_{3,0} \cdot\left(-\mathrm{Q}_{\mathrm{a}} \cdot \mathrm{C}_{\mathrm{a}}\right)+\text { coeffsinvers }_{3,1} \cdot\left(-\mathrm{Q}_{\mathrm{b}} \cdot \mathrm{C}_{\mathrm{b}}\right)}{\mathrm{C}_{4}} \quad\) intake \(=23.129 \cdot \%\)
```


Verification:

Conservation of mass means that the total amount of carbon monoxide entering the building must equal the amount leaving. Because we are writting this equation independently of the previous derivations, these answers seem to be reasonable as shown below.

$$
\mathrm{Q}_{\mathrm{a}} \cdot \mathrm{C}_{\mathrm{a}}+\mathrm{S}_{1}+\mathrm{Q}_{\mathrm{b}} \cdot \mathrm{C}_{\mathrm{b}}+\mathrm{S}_{3}+\mathrm{S}_{5}-\mathrm{Q}_{\mathrm{d}} \cdot \mathrm{C}_{5}-\mathrm{Q}_{\mathrm{c}} \cdot \mathrm{C}_{3}=0 \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

The carbon monoxide contributions from each area are reasonable in that they add up to 100%.
smoker + grill + intake = 100.\%

Figure 2. Concluded.

Example 3

Figure 3 illustrates a homework problem where students practice solving systems of first-order differential equations using the built-in differential equation solvers from Mathcad and verify the solutions using steady-state information as well as conservation of energy.

Problem 1 .

Given : Consider the water heater problem shown below. The thermostat setting for turning the heaters off is 130 F . Assume a water flowrate demand of 2 gpm starting 100 minutes after turning on the heaters and the same thermostat settings for both water heaters.

Find : plot the temperature of the water leaving each water heater until steady state temperatures are reached.

Solution:

Example of a household water heater :
$\begin{array}{ll}\operatorname{KfromF}(T):=(T-32) \cdot \frac{5}{9}+273 & \text { (Convertion function from degrees } F \text { to } K) \\ \text { FfromK }(T):=(T-273) \cdot \frac{9}{5}+32 & \text { (Convertion function from degrees K to F) }\end{array}$
kJ := 1000•J

$\mathrm{C}_{\mathrm{p}}:=1 \cdot \frac{\mathrm{cal}}{\mathrm{gm} \cdot \mathrm{K}} \quad$ (Cp of water)	$\rho:=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$	(Density of water)
$\mathrm{V} 1:=50 \cdot \mathrm{gal}$	$\mathrm{V} 2:=25 \mathrm{gal}$	(Volume of water tank $1 \& 2$)
$\mathrm{T}_{\mathrm{in}}:=\operatorname{KfromF}(50) \cdot \mathrm{K}$	$\mathrm{T}_{\mathrm{in}}=283 \mathrm{~K}$	(Inlet water temperature)
$\mathrm{T}_{\mathrm{a}}:=\operatorname{KfromF}(65) \cdot \mathrm{K}$	$\mathrm{T}_{\mathrm{a}}=291.333 \mathrm{~K}$	(Ambient temperature))

Figure 3. Worksheet for Example 3.

$$
\begin{aligned}
& \mathrm{Q}(\mathrm{t}):=\left\lvert\, \begin{array}{l}
2 \cdot \frac{\text { gal }}{\min } \text { if } \mathrm{t}>100 \mathrm{~min} \\
0 \text { otherwise }
\end{array}\right. \\
& \text { Qgen1(T) }:=\left\lvert\, \begin{array}{l}
6600 \mathrm{~W} \text { if } \mathrm{T}<\mathrm{KfromF}(130) \cdot \mathrm{K} \\
0 \text { otherwise }
\end{array} \quad\right. \text { (Flowrate : Start the flow after } 100 \mathrm{~min} \text {) } \\
& \text { Qgen2(T) }:=\left\lvert\, \begin{array}{l}
4400 \mathrm{~W} \text { if } \mathrm{T}<\mathrm{KfromF}(130) \cdot \mathrm{K} \\
0 \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Using an energy balance to solve for the time rate of change (Slopes) of the temperatures :
$\operatorname{Slopes}(t, T):=\left[\begin{array}{l}\frac{1}{\rho \cdot C_{p} \cdot V 1} \cdot\left[\rho \cdot C_{p} \cdot\left(T_{i n}-T_{a}\right) \cdot Q(t \cdot s)-\rho \cdot C_{p} \cdot\left(T_{0} \cdot K-T_{a}\right) \cdot Q(t \cdot s)+\operatorname{Qgen} 1\left(T_{0} \cdot K\right)\right] \cdot \frac{s}{K} \\ \frac{1}{\rho \cdot C_{p} \cdot V 2} \cdot\left[\rho \cdot C_{P} \cdot\left(T_{0} \cdot K-T_{a}\right) \cdot Q(t \cdot s)-\rho \cdot C_{p} \cdot\left(T_{1} \cdot K-T_{a}\right) \cdot Q(t \cdot s)+\operatorname{Qgen} 2\left(T_{1} \cdot K\right)\right] \cdot \frac{s}{K}\end{array}\right]$
Tinit $:=\binom{$ KfromF(50) }{ KfromF(50) }$\cdot \mathrm{K} \quad$ tinit $:=0 \cdot \mathrm{~s} \quad$ tfin $:=36004 \cdot \mathrm{~s} \quad \underset{\mathrm{Nm}}{\mathrm{N}}:=1000$

Sol $:=\operatorname{rkfixed}\left(\frac{\text { Tinit }}{\mathrm{K}}, \frac{\text { tinit }}{\mathrm{s}}, \frac{\mathrm{tfin}}{\mathrm{s}}, \mathrm{N}\right.$, Slopes $\left.) \mathrm{T}_{1}:=\operatorname{Sol}^{\left\langle{ }^{1}\right\rangle} \quad \mathrm{T}_{2}:=\operatorname{Sol}^{\langle 2\rangle} \quad \mathrm{t}:=\operatorname{Sol}^{\langle 0}{ }^{2}\right\rangle$

Answer:

Figure 3. Continued.

Verification :

The tanks reach a temperature of 130 degrees F (thermostat setting) in 89 min (50 gal tank) and $67 \mathrm{~min}(25 \mathrm{gal}$ tank). The energy stored in the water must be equal to the energy delivered by the electric heating elements:

50 gal tank:
$(\operatorname{KfromF}(130)-\operatorname{KfromF}(50)) \cdot K \cdot C_{p} \cdot \rho \cdot 50 \mathrm{gal}=3.52 \times 10^{4} \cdot \mathrm{~kJ}$
$6600 \mathrm{~W} \cdot 89 \cdot \mathrm{~min}=3.52 \times 10^{4} \cdot \mathrm{~kJ}$

25 gal tank:
$($ KfromF(130) $-\operatorname{KfromF}(50)) \cdot \mathrm{K} \cdot \mathrm{C}_{\mathrm{p}} \cdot \rho \cdot 25 \mathrm{gal}=1.76 \times 10^{4} \cdot \mathrm{~kJ}$
$4400 \mathrm{~W} \cdot 67 \cdot \mathrm{~min}=1.77 \times 10^{4} \cdot \mathrm{~kJ}$

The simulation appear to follow energy conservation since the energy stored in the tanks is equal to the energy delive by the heaters.

The steady state part of the numerical simulation can be checked by assuming that all derivatives are zero and solving the resulting set of algebraic equations for the steady solutions:
(initial guess for the algebraic solver) $\mathrm{T}_{\mathrm{w}}:=\binom{60}{70}$
Given
Slopes $(60 \cdot 250, T)=0 \quad$ Setting all derivatives (slopes) to zero.
$\mathrm{T}_{\mathrm{SS}}:=\operatorname{Ffrom} K(\operatorname{Find}(\mathrm{~T})) \quad \mathrm{T}_{\mathrm{SS}}=\binom{72.5}{87.5}$

Figure 3. Concluded.
Note the use of the Given and Find (Mathcad) commands above in order to find the steady-state solution of the differential equation.

System Dynamics (SD) COURSE

Philosophy behind the System Dynamics course:

In the System Dynamics course students learn to model and obtain the transient and frequency response of mechanical, hydraulic, electric, and thermal systems and interpret the results based on the system parameters. They learn to pose and solve state variable equations using analytical methods as well as numerical solvers and how to combine the state variable equations into higher-order differential equation. Verification of the homework solutions is based on the process learned in the Engineering Analysis course.

Example 4

Figure 4 illustrates a homework set in the System Dynamics course that makes extensive use of Mathcad symbolic commands to simplify the algebra and obtain analytical solutions for differential equations. Given the step response
of a spring-damper system students are asked to find the time constant of the system and use this information along with the steady state information to determine the spring and damping constants for the system.

Problem 3:

Given:
The unit step response of a first order system system is shown below (this is just a spring connected in parallel to a damper through a massless plate and a force pulling on the plate). The units for the y-axis and x-axis are mm and seconds, respectively.

Find:
a) Write down the solution for the STEP response of the system in terms of the time constant, the initial value and the steady state value. Use only symbols, not numbers for this part.
b) Use the equation for part (a) and the value of time when $y=-1 \mathrm{~mm}$ to find the time constant. Repeat the same process when $y=-3.3 \mathrm{~mm}$ and find the time constant. Explain which of the two choices of y is less sensitive to errors when reading the graph? Which of the two values of time constant is more reliable? Clearly explain your answer.
c) Take the derivative of the equation from part (a) and show how to find the time constant based on the initial slope and the steady state value.
d) Write down the differential equation of the system and use this equation along with the steady state information from the plot below to find the spring constant assuming that the step force is of magnitude 5 .
e) Find the value of the damping b.

Figure 4. Worksheet for Example 4.

Solution:
a) The differential equation of the a 1st order system subject to a step input is:

$$
\tau \cdot \frac{\mathrm{dx}(\mathrm{t})}{\mathrm{dt}}+\mathrm{x}(\mathrm{t})=\mathrm{x}_{\mathrm{sS}} \cdot \Phi(\mathrm{t})
$$

The Laplace transform of this equation is:

$$
\tau \cdot(s \cdot X(s)-x(0))+X(s)=\frac{x_{S s}}{s}
$$

rearranging,
$\tau \cdot s^{2} \cdot X(s)+s \cdot X(s)=\tau \cdot s \cdot X(0)+X_{S S}$
Solving for $\mathrm{X}(\mathrm{s})$ and applying partial fraction expansion:

$$
X(s)=\frac{\tau \cdot s \cdot x(0)+x_{s S}}{s(\tau \cdot s+1)}=\frac{A}{s}+\frac{B}{\tau \cdot s+1}
$$

Solving for A and B :

$$
\begin{aligned}
& A=\frac{\left(\tau \cdot s \cdot x(0)+x_{S S}\right)}{s \cdot(\tau \cdot s+1)} \cdot s \text { substitute }, \mathrm{s}=0 \rightarrow \mathrm{~A}=\mathrm{x}_{\mathrm{SS}} \\
& \mathrm{~B}=\frac{\left(\tau \cdot \mathrm{s} \cdot \mathrm{x}(0)+\mathrm{x}_{\mathrm{SS}}\right)}{\mathrm{s} \cdot(\tau \cdot \mathrm{~s}+1)} \cdot(\tau \cdot \mathrm{s}+1) \text { substitute }, \mathrm{s}=-\frac{1}{\tau} \rightarrow \mathrm{~B}=\tau \cdot \mathrm{x}(0)-\tau \cdot \mathrm{x}_{\mathrm{SS}}
\end{aligned}
$$

So $\quad X(s)=\frac{x_{S S}}{s}+\frac{\tau\left(x(0)-x_{S S}\right)}{\tau \cdot s+1}=\frac{x_{\text {SS }}}{s}+\frac{x(0)-x_{\text {SS }}}{s+\frac{1}{\tau}}$

Applying the inverse Laplace Transform:

Figure 4. Continued.
b) Using the Mathcad Trace tool, we find $t=0.555 \mathrm{~s}$ for $\mathrm{y}=-1.011 \mathrm{~mm}, \mathrm{x} \quad \mathrm{ss}=-3.5 \mathrm{~mm}$, and $x(0)=2 \mathrm{~mm}$.

Substituting these values in the equation of part a) gives:
$\tau_{1}:=-1.011 \cdot \mathrm{~mm}=-3.5 \cdot \mathrm{~mm}+\left.(2+3.5) \cdot \mathrm{mm} \cdot \mathrm{e}^{\frac{-0.56 \cdot \mathrm{~s}}{\tau_{1}}}\right|_{\text {solve }, \tau_{1}} ^{\text {float , 3 }} \rightarrow 0.706 \cdot \mathrm{~s}$

$$
{ }^{\tau} 1=0.706 \mathrm{~s}
$$

Using the Mathcad Trace tool, we find $\mathrm{t}=2.355 \mathrm{~s}$ for $\mathrm{y}=-3.3098 \mathrm{~mm}$.

Putting these values in the equation of part a) gives:

$$
\tau_{2}:=-3.3098 \cdot \mathrm{~mm}=-3.5 \cdot \mathrm{~mm}+(2+3.5) \cdot \mathrm{mm} \cdot \mathrm{e}^{\frac{-2.36 \mathrm{~s}}{\tau_{2}}} \left\lvert\, \begin{array}{ll}
\text { solve }, \tau_{2} \\
\text { float }, 3
\end{array} \rightarrow 0.701 \cdot \mathrm{~s} \quad \tau_{2}=0.701 \mathrm{~s}\right.
$$

The first choice using the value of time when $y=-1 \mathrm{~mm}$ is the less sensitive to errors when reading the graph because around $y=-1 \mathrm{~mm}$ the slope of the curve is higher so it is easier to determine the corresponding time value. Thus it is the first value of the time constant who is the more reliable since it is calculated with the values of t and y that are the less sensitive to errors.
c) The derivative of the equation from part a) is:

$$
\frac{\mathrm{dx}(\mathrm{t})}{\mathrm{dt}}=\frac{-\left(\mathrm{x}(0)-\mathrm{x}_{\mathrm{SS}}\right)}{\tau} \cdot \mathrm{e}^{\frac{-\mathrm{t}}{\tau}}
$$

substituting $\mathrm{t}=0$:

$$
\frac{d x(0)}{d t}=\frac{x_{S S}-x(0)}{\tau} \cdot e^{0}=\frac{x_{\text {SS }}-x(0)}{\tau}
$$

solving fot τ

$$
\tau=\frac{\mathrm{x}_{\mathrm{SS}}-\mathrm{x}(0)}{\frac{\mathrm{dx}(0)}{\mathrm{dt}}}
$$

Figure 4. Continued.
d) The differential equation of the system, assuming that the step force is magnitude 5 N , is:

$$
b \cdot \frac{d x(t)}{d t}+k \cdot x(t)=f(t)=-5 N
$$

At steady state $\mathrm{x}=\mathrm{x}_{\mathrm{ss}}$ and the derivative term $\mathrm{dx}(\mathrm{t}) / \mathrm{dt}$ is zero. This yields

$$
\mathrm{x}_{\mathrm{SS}}:=-3.5 \mathrm{~mm} \quad \mathrm{k} \cdot \mathrm{x}_{\mathrm{SS}}=-5 \mathrm{~N} \quad \text { or } \quad \mathrm{k}:=\frac{-5 \mathrm{~N}}{\mathrm{x}_{\mathrm{SS}}} \quad \mathrm{k}=1.429 \frac{\mathrm{~N}}{\mathrm{~mm}}
$$

e) Since $\tau=\frac{b}{k}$ the damping coefficient b is:
$\mathrm{b}:=\tau_{1} \cdot \mathrm{k}$

$$
\mathrm{b}=1.009 \frac{\mathrm{~N}}{\frac{\mathrm{~mm}}{\mathrm{~s}}}
$$

Verification:
The plot below shows that the results from parts a) through e) are consistent because they reproduce the plot given.

$$
\begin{aligned}
& x_{0}:=2 \cdot \mathrm{~mm} \quad \tau:=\frac{\mathrm{b}}{\mathrm{k}} \\
& \mathrm{x}(\mathrm{t}):=\mathrm{x}_{\mathrm{SS}}+\left(\mathrm{x}_{0}-\mathrm{x}_{\mathrm{SS}}\right) \cdot \mathrm{e}^{\frac{-\mathrm{t} \cdot \mathrm{~s}}{\tau_{1}}} \quad \mathrm{x}(\mathrm{t}):=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{x}(\mathrm{t}) \quad \mathrm{x}(0)=-7.79 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

Figure 4. Continued.

The blue straight line intersects the steady state line at a time equal to τ. This verifies the equation from part (c) which can be written as:

$$
\mathrm{x}_{\mathrm{SS}}=\frac{\mathrm{dx}(0)}{\mathrm{dt}} \cdot \tau+\mathrm{x}(0) \quad \text { or } \quad \mathrm{x}(\mathrm{t})=\mathrm{x}^{\prime}(0) \cdot \mathrm{t}+\mathrm{x}_{0} \quad \text { at time } \quad \mathrm{t}=\tau
$$

Figure 4. Concluded.

Energy Systems Design (ESD) Course

Philosophy behind the Energy Systems Design course

In the Energy Systems Design course students learn to analyze and design energy systems components (series and parallel piping systems, piping networks, and heat exchangers), to select and confirm the appropriateness of pumps, and to model and understand the operation of energy systems. The evolution of the Energy Systems Design course was delineated in Hodge (1998). Hodge and Taylor (1999) is a textbook based on the materials covered in the course. Example 4 was taken from a typical homework assignment in this course.

Example 5

A system to pump oil between two reservoirs is illustrated in Figure 5. The pipe, which is 300 ft long, is made of commercial steel and is to handle 0.4 cfs . The oil has a density of $56.1 \mathrm{lbm} / \mathrm{ft}^{3}$ and a viscosity of $0.00576 \mathrm{lbm} / \mathrm{ft}-\mathrm{sec}$. The pump/motor efficiency is 67 percent. Electricity costs $\$ 0.05$ per kWh , and the demand charge is $\$ 10.00$ per kW per month. As a function of diameter, determine the power required to pump the oil from the lower reservoir to the upper reservoir. Select a diameter, and defend your diameter selection.

A schematic of the system is presented in Figure 5.

Figure 5. Oil Pumping System Schematic.
The energy equation for the system can be written as

$$
\begin{equation*}
\frac{P_{A}}{\gamma}+\frac{V_{A}^{2}}{2 g}+Z_{A}=\frac{P_{B}}{\gamma}+\frac{V_{B}^{2}}{2 g}+Z_{B}+f \frac{L}{D} \frac{V^{2}}{2 g}+\left(K_{\text {ent }}+2 K_{\text {elbow }}+K_{\text {exit }}\right) \frac{V^{2}}{2 g}-W_{s} \frac{g_{c}}{g} \tag{1}
\end{equation*}
$$

The minor losses are the entrance, the elbows, and the exit. Since A and B are located at free surfaces of reservoirs open to the atmosphere, $\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}}$ and $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=0$. The energy equation thus reduces to the form:

$$
\begin{equation*}
W_{s}=Z_{B}-Z_{A}+\left(f \frac{L}{D}+K_{\text {ent }}+2 K_{\text {elbow }}+K_{\text {exit }}\right) \frac{V^{2}}{2 g} \tag{2}
\end{equation*}
$$

The Mathcad worksheet containing the problem solution is included as Figure 6. The power input to the pump is required as a function of the pipe diameter. The pipe diameter will be varied, and the pump increase in head and the power required calculated for each diameter. Diameters from 1.5 to 9 inches, in increments of 0.5 inches, are prescribed by $D_{i}=(1+0.5 \cdot i)$, where i is the Mathcad range variable.

The calculation of the increase in head of the pump, W_{s}, required for a given pipe diameter is a Category I problem. The pump increase in head, W_{s}, cab be calculated directly for each pipe diameter. The power required by the pump is

$$
\begin{equation*}
\text { PowerR }=\frac{W_{s} Q \rho}{\eta} \tag{3}
\end{equation*}
$$

Graphical representations of variables of interest are provided in the worksheet. For the relatively small diameter range considered, the power required by the pump changes by two orders of magnitude (from 406 hp to 5.9 hp). The figures provide graphic evidence of the almost D^{5} dependence that power required and pressure drop have on diameter when major losses are dominant in piping systems. An examination of the power required graph provides some insight into diameter selection. The power required has a diminishing returns relationship as the diameter is increased. At about $\mathrm{D}=3$ inches (the "knee" in the curve) further increases in diameter yield little decreases in either the pump power required or the pump increase in head. Thus, a cursory examination eliminates diameters near 1 inch (too much power) or near 6 inches (too large a pipe) and indicates a diameter of 3 inches to be a rational choice.

Economic metrics, such as the minimum present worth, are often used to determine the desired configuration of a system. The present worth depends on the system operating costs as well as the initial system costs. Since the hours per week of use is not provided, a two-shift operation (80 hours/week) is assumed. Additionally, the expected lifetime of the system is taken as 10 years and an interest rate of 7 percent is reasonable. The total system operating costs consist of the energy cost and the demand cost. The total system operating costs per year as a function of pipe diameter is depicted in the worksheet. For very large pipe diameters, the yearly operating costs asymptotically approach a small number (\$250), depending on the pipe diameter.

The initial system costs are composed of the pipe purchase/installation cost and the pump cost. Pipe and pump costs are taken from Hodge and Taylor (1999). The total initial cost of the system is the sum of the pipe and pump costs. The initial costs of the system are dependent only on the pipe diameter and not on the hours per week of operation. The initial system cost as a function of pipe diameter is presented in the worksheet. The system initial costs are dependent mostly on the pipe diameter and length since the pump cost is very small compared to the pipe cost except at the smaller diameters.

With the operating costs per year and the total initial costs known, the present worth for a n-year operating period is

$$
\begin{equation*}
\text { Pr esentW }=\text { CostTot } \cdot \frac{(1+\mathrm{int})^{n}-1}{\text { int } \cdot(1+\mathrm{int})^{n}}+\operatorname{CostInit} \tag{4}
\end{equation*}
$$

where int is the interest rate (7 percent) and n (10 years) is the number of years considered. The present worth for the system as functions of pipe diameter is shown in the worksheet. A minimum present worth exists since operating costs decrease as diameter increases and total initial costs increase as diameter increases. The minimum present worth corresponds to a pipe diameter of 3.5 inches. Hence, the cursory indication of about 3 inches from power required is amazingly accurate.

The recommended pipe diameter is 3.5 inches for this system. The results of both the simple analysis examining only the behavior of the increase in power (or pump increase in pressure) and the more complex present worth economic analysis are essentially the same.

Verification of the solution is provided by observing that the value of the increase in head of the pump, W_{s}, asymptotically approaches the elevation difference of 15 feet. This is appropriate as frictional losses decrease as D^{5} and for large pipe diameters become very small. Consider the fluid velocity as a function of pipe diameter. At a diameter of 3 inches, the fluid velocity is about $8 \mathrm{ft} / \mathrm{sec}$, and at a pipe diameter of 3.5 inches, the fluid velocity is near $6 \mathrm{ft} / \mathrm{sec}$. A general rule of thumb in piping systems is that economic constraints dictate that the velocity should not exceed $10 \mathrm{ft} / \mathrm{sec}$. This solution is very congruent with the rule of thumb thus providing additional verification for the solution.

ORIGIN $\equiv 1 \quad$ Set origin for counters to 1 from the default value of 0. Input the pipe geometry:
Diameter in feet Length in feet Roughness in feet:

$$
\begin{aligned}
& i:=1 . .1 \epsilon \\
& D_{i}:=(1+0.5 \cdot i) \cdot \mathrm{in}
\end{aligned}
$$

$$
L_{M}:=300 \cdot f 1
$$

$$
\varepsilon \text { sin }:=0.00015 \mathrm{ft}
$$

Input the system boundary (initial and end) conditions:
Pressures in psi:
$\binom{\mathrm{P}_{\mathrm{a}}}{\mathrm{P}_{\mathrm{b}}}:=\binom{0}{0} \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}}$
Elevations in feet:

$$
\binom{\mathrm{Z}_{\mathrm{a}}}{\mathrm{Z}_{\mathrm{b}}}:=\binom{0}{15.0} \cdot \mathrm{ft}
$$

Input the loss coefficients:
K factor
K
Equivalent length

$$
\underset{\sim M}{C}:=6 C
$$

Input the fluid properties:
Density in lbm/ft ${ }^{3} \quad$ Viscosity in lbm/ft-s

$$
\rho:=56.1 \cdot \frac{\mathrm{lb}}{\mathrm{ft}^{3}} \quad \mu:=0.00576 \frac{\mathrm{lb}}{\mathrm{ft} \cdot \mathrm{sec}}
$$

Input the flow rate in cfs:

$$
\mathrm{Q}:=0.4 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{sec}}
$$

Define constants and adjust units for consistency:

$$
\mathrm{g}:=32.174 \frac{\mathrm{ft}}{\mathrm{sec}^{2}}
$$

$$
\mathrm{g}_{\mathrm{c}}:=32.174 \frac{\mathrm{ft} \cdot \mathrm{lb}}{\mathrm{lbf} \cdot \mathrm{sec}^{2}}
$$

Define the functions for Reynolds number, fully-rough friction factor, and friction factor:

$$
\begin{aligned}
& \operatorname{Re}(\mathrm{q}, \mathrm{D}):=\frac{4 \cdot \rho \cdot \mathrm{q}}{\pi \cdot \mathrm{D} \cdot \mu} \quad \mathrm{f}(\mathrm{q}, \mathrm{D}, \varepsilon):=\left\lvert\, \frac{0.3086}{\log \left[\frac{6.9}{\operatorname{Re}(\mathrm{q}, \mathrm{D})}+\left(\frac{\varepsilon}{3.7 \cdot \mathrm{D}}\right)^{1.11}\right]^{2}}\right. \text { if } \operatorname{Re(q,D)>2300} \begin{array}{l}
\frac{64}{\operatorname{Re}(\mathrm{q}, \mathrm{D})} \text { otherwise } \\
\mathrm{f}_{\mathrm{T}}(\mathrm{D}, \varepsilon):= \\
\\
\\
\log \left[\left(\frac{\varepsilon}{3.7 \cdot \mathrm{D}}\right)^{1.11]^{2}}\right.
\end{array}
\end{aligned}
$$

Figure 6. Worksheet for Example 5.

The generalized energy equation is:

$$
W_{s_{i}}:=\frac{P_{b}-P_{a}}{\rho}+\left(Z_{b}-Z_{a}\right) \cdot \frac{g}{g_{c}}+\frac{8}{\pi^{2}} \cdot \frac{Q^{2}}{g_{c} \cdot\left(D_{i}\right)^{4}} \cdot\left(f\left(Q, D_{i}, \varepsilon\right) \cdot \frac{L}{D_{i}}+K+C \cdot f_{T}\left(D_{i}, \varepsilon\right)\right)
$$

Power imparted to fluid: Power := $\mathrm{W}_{\mathrm{s}} \cdot \mathrm{Q} \cdot \rho \quad$ Pump mechanical efficiency. $\eta:=0.6$;
Power required: PowerR:= $\frac{\text { Power }}{\eta}$

Consider the cost of running the pump for 80 hours per week (two shifts).

$$
\text { wk }:=7 \cdot \text { day } \quad \text { month }:=4.33 \cdot \mathrm{wk} \quad \mathrm{HW}:=80 \cdot \frac{\mathrm{hr}}{\mathrm{wk}}
$$

Energy Costs:

The total electricity cost is composed of an energy cost (kWh) and a demand cost (kW).
The energy cost is the product of the kWh used per year and the kWh rate:

$$
\text { CostE := PowerR•HW•52•wk } \frac{0.05}{\mathrm{~kW} \cdot \mathrm{hr}}
$$

The demand cost is the product of the demand (kW) per billing period times the number of billing periods in a year (usually 12) times the demand rate per billing period.

$$
\text { CostD }:=\text { PowerR } \cdot 12 \cdot \text { month } \cdot \frac{10.0}{\mathrm{~kW} \cdot \text { month }}
$$

The total electricity cost is the sum.
CTot:= CostE + CostD

Figure 6. Continued.

Initial Costs:
The initial costs are composed of the pipe cost (purchase and installation) and the pump cost (purchase and installation).
Pipe pumpcosts (estimated using information in Hodge and Taylor, 1999).

$$
\text { CostP }:=\frac{\mathrm{L}}{\mathrm{ft}} \cdot\left[0.4 \cdot\left(\frac{\mathrm{D}}{\mathrm{in}}\right)^{2}+1.831+8.178 \cdot \frac{\mathrm{D}}{\mathrm{in}}\right] \quad \text { CostPump }:=6000 \cdot\left(\frac{\text { Power }}{130 \cdot \mathrm{hp}}\right)^{0.5}
$$

The total cost is the sum of the pipe and pump costs.
CostInit := CostP + CostPump

Figure 6. Continued.

Consider the present worth for 10-years of operation at 7 percent.

$$
\begin{aligned}
& \mathrm{n}:=1 \mathrm{C} \text { Number of years considered } \quad \text { int }:=0.0 ; \text { Interest rate } \\
& \text { PresW := CTot } \cdot \frac{(1+\mathrm{int})^{\mathrm{n}}-1}{\text { int } \cdot(1+\mathrm{int})^{\mathrm{n}}}+\text { Costlnit Present worth for } \mathrm{n} \text { years at int interest rate }
\end{aligned}
$$

Fluid velocity calculation. \quad Area $:=0.25 \cdot \pi \cdot D^{2} \quad \mathrm{M}:=\frac{\mathrm{Q}}{\text { Area }}$

Figure 6. Concluded.

Assessment and Conclusions

The purpose of this paper is to discuss a process for inculcating a systematic and practical problem solving approach in engineering students. In all the examples explored in this paper, the same process is used. The treatments of all the example problems are identical and emphasize the three steps: (1) formulate a well-posed system of equations, (2) utilize user-friendly mathematical computer solvers to do the "arithmetic," and (3) verify the results. In this paper, the arithmetic has been accomplished by using Mathcad. Other computational software systems (Mathematics, Matlab,....) offer the same capability, albeit in different formats, but with the same results.

Anecdotally, students appreciate the attention to problem solution using the three-step unified approach. The use of Mathcad relieves the student from assimilating different numerical techniques ("procedures") to solve a system of equations. The net result is that more involved and more realistic problems can be assigned. With less time spent on arithmetic, more time is available for students to engage is higher-level synthesis and understanding.

Examples illustrating a unified approach to solutions of engineering problems in three required courses in ME at MSU have been presented and discussed. The approach offers advantages in providing students with capability to solve more "real world" problems while concentrating on the engineering aspects of the problems.

References

Hodge, B. K., 2005, "A Unified Approach to Piping System Problems," Proceedings of the 2005 ASEE Annual Meeting and Exhibition, Session 3666, Portland, Oregon, June. Also, Proceedings of the 2005 ASEE Southeastern Section Annual Meeting, Chattanooga, TN, April.

Hodge, B. K., 1998, "The Evolution of a Required Energy Systems Design Course," Proceedings of the 1998 ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, Paper 98-WA/DE-9, Nov.

Hodge, B. K., and Luck, R., 2006, "Using Computational Root Solvers: A New Paradigm for Problem Solutions?," Proceedings of the 2006 ASEE Annual Meeting and Exhibition, Session 3666, Chicago, IL, June. Also, Proceedings of the 2006 ASEE Southeastern Section Annual Meeting, Tuscaloosa, AL, April.

Hodge, B. K., and Taylor, R. P., 1999, Analysis and Design of Energy Systems, $3^{\text {rd }}$ ed., Prentice-Hall, Inc., Upper Saddle River, NJ.

Hodge, B. K., and Taylor, R. P., 1998, "The Impact of MathCad in an Energy Systems Design Course," Proceedings of the 1998 ASEE Southeastern Section Annual Meeting, pp. 46-53, Orlando, FL, April. Also, Proceedings of the 1998 ASEE Annual Meeting and Exhibition, Session 2666, Seattle, WA, June.

Rogelio Luck received the B.S. degree from Texas Tech University in 1984, and the M.S. and Ph.D. degrees from Penn State Univ., University Park, in 1987 and 1989, respectively, all in Mechanical Engineering. In 1989 he joined the faculty at the Mechanical Engineering Dept. at Mississippi State University. His current research interest is in the area of simulation, optimization and control of building cooling heating and power. He has published in the areas of building cooling heating and power, uncertainty analysis, inverse heat transfer, radiation heat transfer, applied math, theoretical and applied control systems, piezoelectric sensors, electrical power system generation and distribution, and redundant measurement systems.
B. K. Hodge is Professor of Mechanical Engineering at Mississippi State University (MSU) where he serves as the TVA Professor of Energy Systems and the Environment and is a Giles Distinguished Professor and a Grisham Master Teacher. He is a Fellow of the American Society for Engineering Education and the American Society of Mechanical Engineers and an Associate Fellow of the American Institute of Aeronautics and Astronautics.

[^0]: ${ }^{1}$ Department of Mechanical Engineering, Mississippi State University, MS 9552 Mississippi State, MS 39762, luck@me.msstate.edu.

