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Abstract - Knowledge of steady-state processes of induction motors is critical in the understanding of
their operating principle. In addition to the vast, systematic theories in literature, computer simulations
provide a keen insight to the mechanism. Suitable modeling methods enable motors to be simulated with
various parameters. Many phenomena can be predicted without hardware experimentation. From equivalent
circuits of induction motors of different power, this paper gives detailed formulations that can be used to
model their steady-state performance. Simulation results are given in LabVIEW, which is a widely-adopted
visual modeling platform. Various quantities such as active power, reactive power, power loss, motor slip,
are demonstrated at the starting, running, and stopping of inductor motors. These visual simulations have
been used by Electronics Engineering technology (EET) students for a clearer understanding of parameters
that affect the operation of induction motors.
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1 INTRODUCTION

Induction motors have been widely adopted electromechanical drive for industrial, commercial, and do-
mestic applications that can operate at essential constant speed, because of their lower cost, weight and
inertia, and robustness, easy maintenance, and reliability. In addition, induction machines are being used
increasingly in variable-speed drives by introducing electronic power converters.

Knowledge of steady-state processes of induction motors is critical in the understanding of their operating
principle. In addition to the vast, systematic theories in literature, computer simulations provide a keen
insight to the mechanism. Suitable modeling methods enable motors to be simulated with various parame-
ters. Many phenomena can be predicted without hardware experimentation. The dynamic process involves
with nonlinear differential equations which are beyond the scope of most electronics engineering technology
students. However the steady-state characteristics of induction motors can be easily simulated with math-
ematical circuit models, whose parameters can be obtained if geometric and material data of the motor are
known.

Our EET program has wide coverage of LabVIEW and each student has solid skills of LabVIEW coding.
In addition to hardware experiments, LabVIEW simulation is adopted for the first time in our program to
study the performance of induction motors.

2 EQUIVALENT CIRCUIT OF INDUCTION MOTOR

For an efficient software simulation, equivalent circuit of induction motors must be established. The per
phase equivalent circuit is plotted in Figure 1, where Eg is the source line to neutral voltage; r1 and x1
are stator winding resistance and leaking reactance; Xm is the magnetizing reactance; Rm is the resistance
contributing to losses; r2 and x2 are rotor winding resistance and leaking reactance; Rx is the load resistance.
For a wound-rotor motor, write R2 = r2 + Rx; for a squirrel-cage motor, R2 = r2 as there is no external
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resistance assumed in the simulation. s is the motor slip.

Figure 1: Equivalent circuit of induction motor

At normal working condition, it is simplified to Figure 2.

Figure 2: Further Simplified Equivalent circuit of induction motor

Based on different applications, the equivalent circuits of motors can be further simplified. For small motors,
the equivalent circuit is as in Figure 3 [Soe, 1]. If the power of the motor is large (for example, larger than
2 horse power), the equivalent circuit can be simplified as in Figure 4.

3 STEADY-STATE PERFORMANCE OF INDUCTION MOTOR

Base on the three equivalent circuits above, the steady-state performance can be analyzed as follows.

In general cases, the stator current is calculated by Ohm’s law

Is =
Eg

r1 + jx1 + jXm//Rm//( jx2 + R2
s )

. (1)

Here j =
√−1 and the notation // is used to calculate the impedance of two parallel elements. The rotor

current Ir is calculated by

Ir = Is
jXm//Rm//( jx2 + R2

s )

jx2 + R2
s

. (2)
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Figure 3: Equivalent circuit of small induction motor Figure 4: Equivalent circuit of large induction motor

The complex power from the source is defined by the product of source voltage multiplied by the complex
conjugate (represented by *) of the source current, i.e.,

S = Eg× I∗s . (3)

the active power flow from the source is
Pact = Re(S), (4)

and the reactive power from the source is

Qreact = Im(S). (5)

Here Re and Im are used to represent the real and imaginary parts of the complex power, respectively.

The output mechanic power per phase is then calculated from

Pr = Ir× I∗r
R2

s
=

R2

s
|Ir|2. (6)

The corresponding torque generated by the motor per phase is

T =
Pr

ωs
, (7)

where ωs is the synchronous speed of the motor.

In general cases the equivalent circuit cannot be simplified. Although the calculation of quantities such as
output power and mechanical torque is straightforward as stated above, the analytical formulae are lengthy
because of the complexity of the circuit. However, for induction motors with very small power or with large
power, the formulae are much simpler.

Following similar procedure, for small motors, the mechanical power per phase can be derived as

Pm = |Ir|2R2
1− s

s
; (8)

and the motor torque per phase is

Tm =
R2

sωs

E2
T

(RT + R2
s )2 +(XT + x2)2

. (9)
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The breakdown torque is then derived as

Tmmax =
1

2ωs

E2
T

RT +
√

R2
T +(XT + x2)2

, (10)

where ET is the Thevenin’s voltage; RT is the Thevenin’s resistance, and XT is the Thevenin’s reactance.

In fact the parameters of the equivalent circuit are not constants. They usually are functions of the stator and
rotor currents. The nonlinear differential equations that can be used to describe the steady-state process are
as in [Kudla, 2]. The simulation of the nonlinear equations is not covered here.

For large motors, the motor torque per phase is

Tm =
|Ir|2R2

sωs
=

R2

sωs

E2
g

(r1 + R2
s )2 +(x1 + x2)2

. (11)

The breakdown torque per phase is

Tmmax =
E2

g

R2ωs

r2
1 +(x1 + x2)2

4r2
1 +(x1 + x2)2 , (12)

and it occurs when
smax =

r1R2√
r2

1 +(x1 + x2)2
. (13)

4 INTEGRATING LABVIEW SIMULATIONS INTO HARDWARE EXPERIMENTS

In this section, we discuss how we integrate the software simulation of induction motors into hardware
experiments. The EET program in the University of Southern Mississippi has maintained only one set of
equipment for its power experiments. Due to time restriction, it is difficult for students to obtain the best
experience in the induction motor experiments. The LabVIEW simulations have been implemented by our
EET students and have been used by students taking electric power generation, transmission, and distribu-
tion class. Before entering the hardware laboratory, students conduct simulations of induction motors on the
LabVIEW platform.

4.1 Impedances of the induction motor windings

The measurement of the impedances of the induction motor windings is not an objective of the simulation.
Instead, the impedances should be measured in the hardware experiments. However, typical values of these
impedances are given to students for simulation purpose. Students have been encouraged to verify the
theoretical characteristics derived in last section with different impedances. For demonstration purpose in
this paper, the input parameters for an induction motor are chosen as in [Theodore, 3]: stator resistance r1 =
1.5Ω, rotor resistance is r2 = 1.2Ω; both stator and rotor leakage reactances are x1 = x2 = 3Ω; magnetizing
reactance is Xm = 110Ω; no-load losses resistance Rm = 900Ω.

Based on the proposed equations, an exemplary diagram is sketched in Figure 5 and the corresponding front
panel is plotted in Figure 6.
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Figure 5: LabVIEW Diagram

4.2 Operating characteristics of induction motors

The starting current of an induction motor is usually greater than normal full-load current and the starting
torque is thus reduced because of the reduced line voltage during start-up. The no-load current is usually
less than the full-load current. Because of the large magnetizing current, the power factor of these motors is
small even at full-load.

The stator and rotor current, stator and rotor power are plotted in Figures 7, 8, 9, 10.

In a non-ideal induction motor, the phase difference is much less than 90◦, giving a low starting torque.
Students change the input impedance by simulating a capacitor being placed in series with the starting
winding, and thus improve the efficiency. The output torque and efficiency are plotted in Figures 11, and 12.

In the following hardware laboratory, students are required to set up and conduct several motor experiments:

• to measure the resistance of windings of a split-phase motor;

• to measure the starting and operating characteristics of the split-phase motor under load and no-load
conditions;

• to study the power factor and efficiency of the split-phase motor;

• to measure the starting and operating characteristics of the capacitor start motor.

Similar to what is performed in the software laboratory, students take measurements required to compute
motor parameters and examine the motor characteristics under varying working conditions. Feedbacks from
the hardware laboratory section show that due to the experience gained during the software laboratory,
students appear to be more familiar with the theory and operation of induction motors.
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Figure 6: LabVIEW VI front panel

5 CONCLUSION AND FUTURE WORK

In this paper, different equivalent circuits of induction motors are discussed. Formulations are proposed to
calculate stator and rotor currents, various powers from the source. Constant circuit parameters in steady-
state operations are assumed. These formulae have been used to guide the LabVIEW modeling by students.
The adoption of the software simulation among EET students before their hardware experiments gives them
a better understanding of operating principle of induction motors. There are two tasks to be investigated
in the future: steady-state performance with nonlinear parameters and dynamic performance of three-phase
induction motors. These simulations will be available for use in the next academic year.
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Figure 7: Stator current speed characteristics
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Figure 8: Rotor current speed characteristics
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Figure 9: Stator power speed characteristics
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Figure 10: Rotor power speed characteristics
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Figure 11: Torque speed characteristics
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Figure 12: Efficiency speed characteristics
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