
 
 
 
 
 
 

      Security Metrics for Software System 
              Hao Wang1 [Andy Wang2] 
 
 

       
Abstract-Security metrics for software systems provide quantitative measurement for the degree of 

trustworthiness for software systems. This paper proposes a new approach to define software security 

metrics based on vulnerabilities included in the software systems and their impacts on software quality. 

We use the Common Vulnerabilities and Exposures (CVE), an industry standard for vulnerability and 

exposure names, the Common Weakness Enumeration (CWE), a list of software weaknesses, and the 

Common Vulnerability Scoring System (CVSS), a vulnerability scoring system designed to provide an 

open and standardized method for rating software vulnerabilities, in our metric definition and 

calculation. Examples are provided at the end of the paper, which show that our definition is consistent 

with the common practice and real-world experience about software quality. 

 

                           Introduction 
 
Software is essential to the operation of the Nation’s critical infrastructure. Vulnerabilities in software 

can jeopardize intellectual property, consumer trust, and business operations and services. Additionally, 

a broad spectrum of critical applications and infrastructure, from process control systems to 

commercial application products, depend on secure, reliable software. It is estimated that 90 percent of 

reported security incidents result from exploits against defects in the design or code of software. 

Therefore, ensuring the integrity of software is critical to protecting the infrastructure from threats and 

vulnerabilities, and reducing overall risk to cyber attacks. In order to ensure system reliability, integrity, 

and safety, it is critical to include provisions for built-in security of the enabling software. With the 

advances of computer hardware, the security and dependability of a computing system rely heavily on 

its software. The current state of the arts of software technology has not reached the same level as its 

hardware counterpart in terms of reliability and security.  

 

Metrics are quantifiable measurement. Security metrics are quantitative indicators for the security 

attributes of an information system or technology. Metrics helps us understand quality and consistency. 

Metrics provides a universal way to exchange ideas, to measure the product or service quality, and to 

improve a process. We cannot improve security if we cannot measure it. However, measuring security 

is hard because the discipline itself is still in the early stage of development. To date there are few 

documented resources and existed work on software security metrics. There are a great variety of 

different vulnerabilities existed for different kinds of software. Each vulnerability or exposure has 

different impact on the quality and security attributes of the software product such as confidentiality, 

integrity, availability, and so on. Another challenge is to validate the defined security metrics, 

comparing different metrics definitions. Finally, lack of tool support represents yet another challenge in 

our research. We strongly believe that it is essential to automate the process of security management to 



 
 
 
 
 
 
make it more efficient and less error-prone. We would like to implement a software tool delivering the 

security metrics for a given soft-ware system automatically, or at least semi-automatically with a user 

friendly graphical user interface. We also expect our approach is general enough to measure security 

metrics for reusable software components as well as software systems.  

Software security involves internal weakness and external attacks. The external threat agents often 

break a software system by exploiting its internal weakness, i.e., the software vulnerabilities. Therefore, 

our research focuses on software vulnerabilities that become fundamental indicators for the level of 

trustworthiness of the software. There are a great variety of software vulnerabilities discovered over 

times.  

 

Our approach is to select representative weaknesses that reflect the software security level. We use the 

Common Vulnerabilities and Exposures (CVE) lists to identify the weakness included in the software 

system during its lifecycle. Obviously more vulnerabilities discovered in a software system would lead 

higher potential risks for the software system. Considering the fact that different vulnerabilities may 

have different consequences to security, we want to assess the severity of vulnerabilities, focusing on 

their likelihood to be exploited. 

 

 

                       Software Vulnerability  
 
Rigorous measurement of software security can provide substantial help in the evaluation and 

improvement of software products and processes. However, little agreement exists about the meaning 

of software security and how to define software security.  

 

The CVSS (Common Vulnerability Scoring System) provides a tool to quantify the severity and risk of 

a vulnerability to an information asset in a computing environment. It was designed by NIST (National 

Institute of Standard and Technology) and a team of industry partners. CVSS metrics for vulnerabilities 

are divided into three groups: Base metrics measure the intrinsic and fundamental characteristics of 

vulnerabilities that do not change over time or in different environments. Temporal metrics measure 

those attributes of vulnerabilities that change over time but do not change among user environments. 

Environmental metrics measure those vulnerability characteristics that are relevant and unique to a 

particular users’ environment.  

 

There are six base metrics that capture the most fundamental features of a vulnerability:  

 

(1) Access Vector (AV): It measures how the vulnerability is exploited, for instance, locally or 

remotely. The more remote an attacker can be to attack an information asset, the greater the 

vulnerability score. 

 

(2) Access Complexity (AC): It measures the complexity of the attack required to exploit the 

vulnerability once an attacker has gained access to the target system. The lower the required 

complexity, the higher the vulnerability score.  



 
 
 
 
 
 
 

(3) Authentication (Au): It measures the number of times an attacker must authenticate to a target 

in order to exploit a vulnerability. The fewer authentication instances that are required, the 

higher the vulnerability score.  

 

 

(4) Confidentiality Impact (CC): It measures the impact on confidentiality of a successfully 

exploited vulnerability. Increased confidentiality impact increases the vulnerability score.  

 

(5) Integrity Impact (IC): It measures the impact on integrity of a successfully exploited 

vulnerability. Increased integrity impact increases the vulnerability score.  

 

(6) Availability Impact (AC): It measures the impact on availability of a successfully exploited 

vulnerability. Increased availability impact increases the vulnerability score.  

 

The temporal metrics in CVSS represent the time dependent features of the vulnerabilities, including 

exploitability in terms of their technical details, the remediation status of the vulnerability, and the 

availability of exploit code or techniques. The environmental metrics represent the implementation and 

environment specific features of the vulnerability. There are three environmental metrics as defined 

below, which capture the characteristics of a vulnerability that are associated with a users’ IT 

environment. The scoring process first calculates the base metrics according to the base equation, 

which delivers a score ranging from 0 to 10, and creates a vector. The vector is a text string that 

contains the values assigned to each metric, and it is used to communicate exactly how the score for 

each vulnerability is derived. Optionally, the base score can be refined by assigning values to the 

temporal and environmental metrics. If the temporal score is needed, the temporal equation will 

combine the temporal metrics with the base score to produce a temporal score ranging from 0 to 10. 

Similarly, if an environmental score is needed, the environmental equation will combine the 

environmental metrics with the temporal score to produce an environmental score ranging from 0 to 10. 

For the purpose of this paper, we give below the base metric equations only. 

 

 

 
 

 

 

 

 

 

 

 

 



 
 
 
 
 
 

                       Software Security Metrics 
 

Rigorous measurement of software security can provide substantial help in the evaluation and 

improvement of software products and processes. However, little agreement exists about the meaning 

of software security and how to define software security. We define software security metrics based on 

the representative weakness of the software as shown in the formulas below: 

( )∑
=

×=
m

n
nn WPsSM

1

)(  (1) 

Where SM(s) stands for the security metrics for the software s, and Wi (i = 1, 2, …, m) are the severity 

of those representative weakness in the software s. Note a software product may have many 

weaknesses and flaws. Here “representative” refers to those weaknesses that lead most vulnerabilities 

that may be exploited by attackers. Suppose the weakness corresponding to Wn has k vulnerabilities 

and their corresponding CVSS [1] base scores are V1, V2, …, Vk. The severity of this weakness, Wn, is 

defined as the average score of them, as demonstrated in the formula (2) below. 

K

V
W

K

i
i

n

∑
== 1          (2) 

In formula (1), each Pi (i = 1, 2, …, m) represents the risk of the corresponding weakness. We use the 

percentage each representative weakness occurs in the overall weakness occurrences to calculate Pi as 

the formula (3) below. 

∑
=

=
m

i
i

i
n

R

R
P

1

         (3) 

Where Rn is the frequency of occurrences for each representative weakness over a span of time in 

months, as illustrated in formula (4) below, where K is the number of weaknesses, and M is the number 

of months. 

M

K
Rn =             (4) 

To make the value of software security metrics SM(s) to range from 0 to 10, we require that the 

following formula (5) hold for Pn. 

 

∑
=

=
m

n
nP

1

1           (5) 

As shown in the formulas above, we define software security metrics based on the representative 

weaknesses of the software. For a given piece of software, we first find out those typical weaknesses 

reported in Common Weakness Enumeration (CWE) [15] related to the software and calculate the 

number of vulnerabilities caused by these weaknesses. Some weakness causes more vulnerabilities than 



 
 
 
 
 
 
others. We pick up those weaknesses that cause most vulnerabilities as our “representative 

weaknesses”. After identifying the representative weaknesses for the software, we incorporate the 

severity of representative weaknesses into the security metrics. The severity of a vulnerability is 

captured by calculating the percentage of occurrences of this vulnerability compared with the total 

occurrences of all vulnerabilities. We use the average of CVSS [1] base scores that are from the CVE 

[7, 9] lists in a specific version of the software. In the equation (2), V represents the CVSS base score 

for the vulnerability in the CVE list. The parameter K in equation (4), however, represents the number 

of weakness as showed in [8]. 

 

The examples given in the following sections demonstrate how to obtain software security metrics 

based on their vulnerabilities. 

 

                           Sample Application 
 
Example 1: Mozilla Firefox 2 

1. Let’s first find out the top five weaknesses listed in [8] leading to most vulnerabilities as 

shown in the following table: 

The name of representative weakness in the 

Mozilla Firefox 2 

The amount of vulnerabilities that are caused 

by the corresponding weakness in the Mozilla 

Fire Fox 2  

1. Input Invalidation  13 

2. Cross-site scripting (XSS) 14 

3. Insufficient Information 12 

4.Resource Management Error 12 

5. Permission, Privilege, and Access Control 10 

 

2. Then for each weakness, we find out those vulnerabilities and their CVSS base scores. 

               1. Input Invalidation 

CVE ID CVSS BASE SCORE 

1.cve-2008-2933 2.6 

2.cve-2008-2809 4.0 

3.cve-2008-2805 5.0 

4.cve-2008-2806 7.5 

5.cve-2008-0414 4.3 

6.cve-2007-5691 4.3 

7.cve-2007-5339 4.3 

8.cve-2007-4841 9.3 

9.cve-2007-1362 4.3 

10.cve- 2007-2292 4.3 

11.cve-2006-6971 5.o 



 
 
 
 
 
 
12.cve-2006-2894 4.0 

13.cve-2007-5340 4.3 

 

               2. Cross-site scripting (XSS) 

CVE ID CVSS BASE SCORE 

1.cve-2008-4066 4.3 

2.cve-2008-4065 4.3 

3.cve-2008-2800 4.3 

4.cve-2008-2808 4.3 

5.cve-2008-1234 4.3 

6.cve-2008-1243 4.3 

7.cve-2008-0416 4.3 

8.cve-2008-0415 4.3 

9.cve-2007-6589 4.3 

10.cve- 2007-5947 4.3 

11.cve-2007-5947 4.3 

12.cve-2007-5415 4.3 

13.cve-2007-3670 4.3 

14.cve-2007-0995 4.3 

 

               3. Insufficient Information 

CVE ID CVSS BASE SCORE 

1.cve-2008-4062 10.0 

2.cve-2008-2806 7.5 

3.cve-2008-2785 9.3 

4.cve-2007-5959 9.3 

5.cve-2007-3845 9.3 

6.cve-2007-3734 9.3 

7.cve-2007-3735 9.3 

8.cve-2007-3737 9.3 

9.cve-2007-3738 9.3 

10.cve- 2007-0994 6.8 

11.cve-2007-0775 3.7 

12.cve-2007-6398 6.8 



 
 
 
 
 
 

 

       5. Permission, Privilege, and Access Control           

CVE ID CVSS BASE SCORE 

1.cve-2008-4060 7.5 

2.cve-2008-4059 7.5 

3.cve-2008-4058 7.5 

4.cve-2008-3836 7.5 

5.cve-2008-3835 7.5 

6.cve-2008-2802 7.5 

7.cve-2008-2803 6.8 

8.cve-2008-2810 6.8 

9.cve-2007-3285 6.8 

10.cve- 2007-0802 6.4 

 

3. We identify the weakness, the vulnerabilities, and their frequencies of occurrences in 

the software. 

The name of the 

weakness 

The total amount of 

CVE lists 

(K) 

The span of time 

(mm/yyyy) 

(M) 

The probability of 

each weakness’s 

occurrence (Rn)=K/M 

1. Input Invalidation K=13 02/2007-07/2008 

M=17( Months) 

R1=13/17 

 

            4.Resource Management Error            

CVE ID CVSS BASE SCORE 

1.cve-2008-2798 10.0 

2.cve-2008-2799 10.0 

3.cve-2008-2811 10.0 

4.cve-2008-4062 10.0 

5.cve-2008-2419 4.3 

6.cve-2008-1380 9.3 

7.cve-2008-1236 6.8 

8.cve-2008-1237 6.8 

9.cve-2008-0413 9.3 

10.cve- 2008-0419 9.3 

11.cve-2007-5896 7.1 

12.cve-2008-0412 9.3 



 
 
 
 
 
 
2. Cross-site scripting 

(XSS) 

K=14 02/2007-09/2008 

M=19(Months) 

R2=14/19 

 

3. Insufficient 

Information 

K=12 12/2006-09/2008 

M=21(Months) 

R3=12/21 

4.Resource 

Management Error 

K=12 11/2007-09/2008 

M=10(Months) 

R4=12/10 

5. Permission, 

Privilege, and Access 

Control 

K=10 02/2007-09/2008 

M=19(Months) 

R5=10/19 

 

4. Based on these data, we could calculate the average of CVSS base scores for those 

vulnerabilities and generate the percentage of each weakness in the software: 

The name of the weaknesses The severity of the 

weakness(The average of 

CVSS BASE SCORES for 

the CVE lists that are caused 

by the corresponding 

weakness) 

(Wn) 

The percentage of each weakness in 

the software  

(Pn)=Rn / (R1+R2+….Rn) 

1. Input Invalidation W1=4.86 

 

R1/(R1+R2+R3+R4+R5)=P1 

P1=25935/128853 

2. Cross-site scripting  W2=4.30 

 

R2/(R1+R2+R3+R4+R5)=P2 

P2=24990/128853 

3. Insufficient Information W3=8.32 

 

R3/(R1+R2+R3+R4+R5)=P3 

P3=19380/128853 

4.Resource Management 

Error 

W4=8.51 

 

R4/(R1+R2+R3+R4+R5)=P4 

P4=40698/128853 

5. Permission, Privilege, and 

Access Control 

W5=7.18 

 

R5/(R1+R2+R3+R4+R5)=P5 

P5=17850/128853 

 

5. We could calculate the security metric score based on the formula (1): 



 
 
 
 
 
 
 

         The Final Score=W1*P1+W2*P2+W3*P3+W4*P4+W5*P5=6.7 

 

Example 2: Microsoft Internet Explorer 6 

1. Find out the top five weaknesses listed in [8] leading to most vulnerabilities as shown in 

the following table: 

The name of weakness in the Microsoft 

Internet Explorer 6. 

The amount of vulnerabilities that are caused 

by the corresponding weakness in the 

Microsoft Internet Explorer 6. 

1. Buffer Error  8 

2.Code Injection 11 

3. Resource Management Error 10 

 

2. Then for each weakness, we find out those vulnerabilities and their CVSS base scores. 

               1. Buffer Error 

CVE ID CVSS BASE SCORE 

1.cve-2008-3014 9.3 

2.cve-2008-3012 9.3 

3.cve-2007-5348 9.3 

4.cve-2008-1442 9.3 

5.cve-2007-4790 7.5 

6.cve-2007-3481 5.0 

7.cve-2007-2222 9.3 

8.cve-2003-1484 4.3 

 

               2.Code Injection 

CVE ID CVSS BASE SCORE 

1.cve-2008-1085 9.3 

2.cve-2008-1086 9.3 

3.cve-2008-1368 4.3 

4.cve-2008-0076 9.3 

5.cve-2008-0078 9.3 

6.cve-2007-5456 7.5 

7.cve-2007-3892 7.5 



 
 
 
 
 
 

 

3. We identify the weakness, the vulnerabilities, and their frequencies of occurrences in the 

software. 

 

The name of the 

weakness 

The total amount of 

CVE lists 

(K) 

The span of time 

(mm/yyyy) 

(M) 

The probability of 

each weakness’s 

occurrence (Rn)=K/M 

1. Buffer Error K=8 12/2003-09/2008 

M=57( Months) 

R1=8/57 

 

2.Code Injection K=11 12/2004-04/2008 

M=40( Months) 

R2=11/40 

 

3.Resource 

Management Error 

K=10 08/2007-10/2008 

M=14( Months) 

R3=10/14 

 

4. Based on these data, we could calculate the average of CVSS base scores for those 

vulnerabilities and generate the percentage of each weakness in the software: 

The name of the weaknesses The severity of 

weakness(The average of 

CVSS BASE SCORES for 

the CVE lists that are caused 

by the corresponding 

weakness) 

(Wn) 

The percentage of each weakness in 

the software. 

(Pn)=Rn / (R1+R2+….Rn) 

            3.Resource Management Error            

CVE ID CVSS BASE SCORE 

1.cve-2008-3476 9.3 

2.cve-2008-3475 9.3 

3.cve-2008-3013 9.3 

4.cve-2008-2254 9.3 

5.cve-2008-2255 9.3 

6.cve-2008-2257 9.3 

7.cve-2008-2258 9.3 

8.cve-2008-0077 9.3 

9.cve-2008-3903 6.8 

10.cve- 2008-3041 9.3 



 
 
 
 
 
 
1. Buffer Error W1=7.91 

 

R1/(R1+R2+R3)=P1 

P1=2240/18029 

2.Code Injection W2=8.22 

 

R2/(R1+R2+R3)=P2 

P2=4389/18029 

3.Resource Management 

Error 

W3=9.05 

 

R3/(R1+R2+R3)=P3 

P3=11400/18029 

 

5. We could calculate the security metric score based on the formula (1): 

 

       The Final Score=W1*P1+W2*P2+W3*P3= 8.7 

 

Example 3: Microsoft Internet Explorer 7 

1. Find out the top five weaknesses listed in [8] leading to most vulnerabilities as shown 

in the following table: 

The name of weakness in Microsoft Internet 

Explorer 7. 

The amount of vulnerabilities that are caused 

by the corresponding weakness in the 

Microsoft Internet Explorer 7. 

1. Input Invalidation 6 

2.Code Injection 8 

3. Resource Management Error 12 

 

2. Then for each weakness, we find out those vulnerabilities and their CVSS base 

scores. 

               1. Input Invalidation 

CVE ID CVSS BASE SCORE 

1.cve-2008-2256 9.3 

2.cve-2008-2259 9.3 

3.cve-2008-4071 5.0 

4.cve-2008-1544 5.8 

5.cve-2008-1545 4.3 

6.cve-2007-3896 9.3 

 

 



 
 
 
 
 
 
               2.Code Injection 

CVE ID CVSS BASE SCORE 

1.cve-2008-1085 9.3 

2.cve-2008-0076 9.3 

3.cve-2008-0078 9.3 

4.cve-2007-5344 6.8 

5.cve-2007-5456 7.5 

6.cve-2007-3892 7.5 

7.cve-2007-3550 7.8 

8.cve-2007-1751 9.3 

 

 

3.  We identify the weakness, the vulnerabilities, and their frequencies of occurrences 

in the software. 

The name of the 

weakness 

The total amount of 

CVE lists 

(K) 

The span of time 

(mm/yyyy) 

(M) 

The probability of 

each weakness’s 

occurrence (Rn)=K/M 

1. Input Invalidation K=6 10/2007-09/2008 

M=11( Months) 

R1=6/11 

 

2.Code Injection K=8 06/2007-04/2008 R2=8/10 

            3.Resource Management Error            

CVE ID CVSS BASE SCORE 

1.cve-2008-4381 5.0 

2.cve-2008-4127 4.3 

3.cve-2008-3902 9.3 

4.cve-2008-2254 9.3 

5.cve-2008-2255 9.3 

6.cve-2008-2257 9.3 

7.cve-2008-2258 9.3 

8.cve-2008-0077 9.3 

9.cve-2008-3903 6.8 

10.cve- 2007-5347 6.8 

11.cve- 2007-3893 6.8 

12.cve- 2007-3041 9.3 



 
 
 
 
 
 

M=10( Months)  

3.Resource 

Management Error 

K=12 08/2007-10/2008 

M=14( Months) 

R3=12/14 

 

4. Based on these data, we could calculate the average of CVSS base scores for those 

vulnerabilities and generate the percentage of each weakness in the software: 

The name of the weaknesses The severity of 

weakness(The average of 

CVSS BASE SCORES for 

the CVE lists that are caused 

by the corresponding 

weakness) 

(Wn) 

The percentage of each weakness in 

the software  

(Pn)=Rn / (R1+R2+….Rn) 

1. Input Invalidation W1=7.17 

 

R1/(R1+R2+R3)=P1 

P1=210/848 

2.Code Injection W2=8.35 

 

R2/(R1+R2+R3)=P2 

P2=308/848 

3.Resource Management 

Error 

W3=7.90 

 

R3/(R1+R2+R3)=P3 

P3=330/848 

 

5. We could calculate the security metric score based on the formula (1): 

 

       The Final Score=W1*P1+W2*P2+W3*P3= 7.9 

 

 

 

 

 

 

 



 
 
 
 
 
 

                    Conclusion and Discussion 
 
It is widely recognized that metrics are important to information security because metrics can be an 

effective tool for information security professionals to measure the security strength and levels of their 

systems, products, processes, and readiness to address security issues they are facing. Metrics can also 

help identify system vulnerabilities, providing guidance in prioritizing corrective actions, and raising 

the level of security awareness within the organization. With the knowledge of security metrics, an 

information security professional can answer typical questions like “Are we secure?” and “How secure 

are we?” in a formal and persuadable manner. For federal agencies, a number of existing laws, rules, 

and regulations cite security metrics as a requirement. These laws include the Clinger-Cohen Act, 

Government Performance and Results Act (GPRA), Government Paperwork Elimination Act (GPEA), 

and Federal Information Security Management Act (FISMA). Moreover, metrics can be used to justify 

and direct future security investment. Security metrics can also improve accountability to stakeholders 

and improve customer confidence. 

 

However, the term “security metrics” is often ambiguous and confusing in many contexts of discussion 

in information security. Some guiding standards and good experiments of security metrics exist, such 

as FIPS 140-1/2, ITSEC, TCSEC, Common Criteria (CC) and NIST Special Publication 800-55, but 

they are either too broad without precise definitions, or too narrow to be generalized to cover a great 

variety of security situations. Metrics are quantifiable measurement. Security metrics are quantitative 

indicators for the security attributes of an information system or technology. A quantitative 

measurement is the assignment of numbers to the attributes of objects or processes. For information 

security professionals, we are interested in measuring the fundamental security attributes of 

information such as confidentiality, integrity, and availability. 

 

Of course, perfect security is unachievable for information systems. The key of information security 

practice is to reach a goal as close as possible to the perfect security. In this paper, we present a 

practical approach to define software security metrics taking into consideration of time as well. 

However, our time here in this paper is a coarse grain of time, namely, we count the occurrences of 

vulnerabilities over a time span in months. 

 

Another contribution of this paper is to associate software weakness and vulnerabilities with security 

metrics. Software vulnerabilities exist due to flaws and errors in design, coding, testing, and 

maintenance of software. These vulnerabilities could be exploited by attackers to compromise the 

computing system where the software is running on. Therefore, the number of vulnerabilities and the 

severity of those vulnerabilities should be important indicators for software security and 

trustworthiness. The examples provided in the previous section confirm to our argument. The more 

vulnerabilities a software product has, the lower level of trustworthiness this software product has. The 

more severe vulnerabilities a software product has, the less secure this software will be. In our 

examples provided in the previous section, we have a few sample software products and their security 

metrics calculated as shown in the following table, which seems to match our experience and published 

security advisories. 



 
 
 
 
 
 
 

Software Product Security Metrics 

Mozilla Firefox 2 6.7 

Microsoft IE 6 8.7 

Microsoft IE 7 7.9 

 

We strongly believe that common weakness and exposures (CWE) and common vulnerability 

enumerations (CVE) provide importance source for software security metrics. 

 

 

 

 

 

 

 

                               

 

 

 

 

 

 

 

 



 
 
 
 
 
 

 

                          Reference 

[1] Peter Mell, Karen Scarfone, and Sasha Romanosky, A Complete Guide to the Common Vulnerability Scoring 

System (CVSS), Version 2.0, Forum of Incident Response and Security Teams, 

http://www.first.org/cvss/cvss-guide.html (July 2007). 

[2] J. A. Wang, M. Xia, and F. Zhang, “Metrics for Information Security Vulnerabilities, Journal of Applied 

Global Research, Volume 1, No. 1, 2008, pp. 48-58. 

[3] J.A.Wang, Fengwei Zhang and Min Xia, “Temporal Metrics for Software Vulnerabilities,” in Proceedings of 

CSIIRW’08, May 12 – 14, 2008, Oak Ridge, TN, USA. 

[4] J. A. Wang, “Information Security Models and Metrics”, in Proceedings of 43rd ACM Southeast Conference, 

Volume 2, pp. 178 – 184. ISBN: 1-59593-059-0. March 2005, Kennesaw, GA. 

[5] Elizabeth Chew et.al., Guide for Developing Performance Metrics for Information Security, NIST Special 

Publication 800-80, May 2006 

[6] National Institute of Standards and Technology, National Vulnerability Database, Common Vulnerability 

Scoring System Calculator, http://nvd.nist.gov/cvss.cfm?calculator (Accessed by October, 2008). 

[7] National Institute of Standards and Technology , National Vulnerability Database, Search CVE and CCE 

Vulnerability Database, , http://web.nvd.nist.gov/view/vuln/search?execution=e2s1 (Accessed by October, 

2008) 

[8] The MITRE Corporation, Common Weakness Enumeration, CWE Comprehensive Dictionary(1.0.1), 

http://cwe.mitre.org/data/slices/2000.html (Accessed by October, 2008) 

[9] The MITRE Corporation, Common Vulnerability and Exposures, CVE List, http://cve.mitre.org/cve/cve.html 

(Accessed by October, 2008) 

[10] The MITRE Corporation, Common Attack Pattern Enumeration and Classification, CAPEC Dictionary 

(Release 1.1), http://capec.mitre.org/data/dictionary.html (Accessed by October, 2008) 

[11] Michael Gegick1, Laurie Williams, Mladen Vouk, “Predictive Models for Identifying Software Components 

Prone to Failure During Security Attacks”, Department of Computer Science, North Carolina State 

University, October 28th, 2008, 

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/measurement/1075-BSI.pdf (Accessed by 

November, 2008) 

[12] Chris Wysopal, Software Security Weakness Scoring, Metricon 2.0, August 7, 2007. 

www.securitymetrics.org/content/attach/Metric on2.0/Wysopal-metricon2.0-software-weakness-scoring.ppt 

(Accessed by October, 2008) 

[13] Mell P. and Quinn S, “Automating Compliance Checking, Vulnerability Management, and Security 

Measurement,” 2007 Information Assurance Workshop (IAWS) Presentation, 2007. 

[14] NIST, Information Security Automation Program, Automating Vulnerability Management, Security 

Measurement, and Compliance, Version 1.0 Beta, revised on May 22, 2007.  



 
 
 
 
 
 
[15] The MITRE Corporation, Common Weakness Enumeration, http://cwe.mitre.org/  

    (Accessed on October 20, 2008) 

[16] J. A. Wang, “Information Security Models and Metrics”, in Proceedings of 43rd ACM Southeast Conference,   

Volume 2, pp. 178 – 184. ISBN: 1-59593-059-0. March 2005, Kennesaw, GA 

 

Hao Wang 

I’m studying at Southern Polytechnic State University as a senior student. I’m currently doing research 

about information security with Dr. Wang, who is the Chair of IT Department at Southern Polytechnic 

State University. Mailing address: 1494 Collingwood Dr SE, Marietta, GA.  Email: hwang@spsu.edu 

 

Andy Wang 

I’m the Chair of IT Department at Southern Polytechnic State University. My research interests include: 

Embedded Software Engineering, Component-Based Development, Information Security, Computer 

Game Design and Implementation, Formal Methods in Computer Engineering, Software Reuse and 

Metrics, Web Services, and Computer Science Education. I am a member of ACM (Association for 

Computing Machinery), member of IEEE Computer Society, member of IEEE Technical Council on 

Software Engineering, member of CUR (The Council on Undergraduate Research), member of CCSC 

(The Consortium for Computing Sciences in Colleges). Mailing address: 1160S Marietta Pkwy, 

Marietta, GA. 30060. Email: jwang@spsu.edu 

 


