Security Metrics for Software System
Hao Wang" [Andy Wang?]

Abstract-Securitymetrics for software systems provide quantitatheasurement for the degree of
trustworthiness for software systems. This papep@ses a new approach to define software security
metrics based on vulnerabilities included in thitveare systems and their impacts on software gualit
We use the Common Vulnerabilities and ExposuresH)C¥n industry standard for vulnerability and
exposure names, the Common Weakness Enumer@WiE), a list of software weaknesses, and the
Common Vulnerability Scoring System (CVSS), a vuhiidity scoring system designed to provide an
open and standardized method for rating softwarmevabilities, in our metric definition and
calculation. Examples are provided at the end ®fpper, which show that our definition is consiste
with the common practice and real-world experiesoeut software quality.

Introduction

Software is essential to the operation of the Méicritical infrastructure. Vulnerabilities in safare
can jeopardize intellectual property, consumerttiarsd business operations and services. Additignal
a broad spectrum of critical applications and istinacture, from process control systems to
commercial application products, depend on secali@ple software. It is estimated that 90 peraént
reported security incidents result from exploitaiagt defects in the design or code of software.
Therefore, ensuring the integrity of software isical to protecting the infrastructure from threand
vulnerabilities, and reducing overall risk to cylagtacks. In order to ensure system reliabilitiedgnity,
and safety, it is critical to include provisions fwilt-in security of the enabling software. Witre
advances of computer hardware, the security aneindigbility of a computing system rely heavily on
its software. The current state of the arts ofvearfe technology has not reached the same leved as i
hardware counterpart in terms of reliability anduséy.

Metrics are quantifiable measurement. Security ingetire quantitative indicators for the security
attributes of an information system or technoldggtrics helps us understand quality and consistency
Metrics provides a universal way to exchange ideasjeasure the product or service quality, and to
improve a process. We cannot improve security iCam@not measure it. However, measuring security
is hard because the discipline itself is stillhe early stage of development. To date there are fe
documented resources and existed work on softveseisy metrics. There are a great variety of
different vulnerabilities existed for different kis of software. Each vulnerability or exposure has
different impact on the quality and security atités of the software product such as confidengjalit
integrity, availability, and so on. Another chaljenis to validate the defined security metrics,
comparing different metrics definitions. Finallpck of tool support represents yet another chadiéng
our research. We strongly believe that it is esakttt automate the process of security managetoent

make it more efficient and less error-prone. Weldidike to implement a software tool delivering the
security metrics for a given soft-ware system auwtiieally, or at least semi-automatically with aruse
friendly graphical user interface. We also expextapproach is general enough to measure security
metrics for reusable software components as wedbfiwiare systems.

Software security involves internal weakness andragl attacks. The external threat agents often
break a software system by exploiting its intemedkness, i.e., the software vulnerabilities. Tioees
our research focuses on software vulnerabilitias become fundamental indicators for the level of
trustworthiness of the software. There are a graaéty of software vulnerabilities discovered over
times.

Our approach is to select representative weaknésaeseflect the software security level. We use t
Common Vulnerabilities and Exposures (CVE) listgdtentify the weakness included in the software
system during its lifecycle. Obviously more vulrlhisies discovered in a software system would lead
higher potential risks for the software system. €idering the fact that different vulnerabilitiesyna
have different consequences to security, we waassess the severity of wlnerabilities, focusing o
their likelihood to be exploited.

Software Vulnerability

Rigorous measurement of software security can geosubstantial help in the evaluation and
improvement of software products and processes.edexy little agreement exists about the meaning
of software security and how to define softwarauseg

The CVSS (Common Vulnerability Scoring System) [nieg a tool to quantify the severity and risk of
a vulnerability to an information asset in a conmpgienvironment. It was designed by NIST (National
Institute of Standard and Technology) and a teamdfstry partners. CVSS metrics for vulnerabititie
are divided into three groups: Base metrics meabarentrinsic and fundamental characteristics of
vulnerabilities that do not change over time odiiiferent environments. Temporal metrics measure
those attributes of vulnerabilities that changer @ivee but do not change among user environments.
Environmental metrics measure those vulnerabiligracteristics that are relevant and unique to a
particular users’ environment.

There are six base metrics that capture the modifuental features of a vulnerability:

(1) Access Vector (AV): It measures how the vulnerapib exploited, for instance, locally or
remotely. The more remote an attacker can be acla#tn information asset, the greater the
vulnerability score.

(2) Access Complexity (AC): It measures the compleaitthe attack required to exploit the
vulnerability once an attacker has gained accegttarget system. The lower the required
complexity, the higher the vulnerability score.

(3) Authentication (Au): It measures the number of 8raa attacker must authenticate to a target
in order to exploit a vulnerability. The fewer aetitication instances that are required, the
higher the vulnerability score.

(4) Confidentiality Impact (CC): It measures the impactconfidentiality of a successfully
exploited wulnerability. Increased confidentialitypact increases the vulnerability score.

(5) Integrity Impact (IC): It measures the impact otegrity of a successfully exploited
vulnerability. Increased integrity impact increaties vulnerability score.

(6) Availability Impact (AC): It measures the impact availability of a successfully exploited
vulnerability. Increased availability impact incsea the vulnerability score.

The temporal metrics in CVSS represent the timeddent features of the vulnerabilities, including
exploitability in terms of their technical detaitee remediation status of the vulnerability, amel t
availability of exploit code or techniques. The iranmental metrics represent the implementation and
environment specific features of the vulnerabilifiiere are three environmental metrics as defined
below, which capture the characteristics of a wah#ity that are associated with a users’ IT
environment. The scoring process first calculgtesiase metrics according to the base equation,
which delivers a score ranging from 0 to 10, amghias a vector. The vector is a text string that
contains the values assigned to each metric, asdiged to communicate exactly how the score for
each vulnerability is derived. Optionally, the basere can be refined by assigning values to the
temporal and environmental metrics. If the tempecake is needed, the temporal equation will
combine the temporal metrics with the base scopedduce a temporal score ranging from 0 to 10.
Similarly, if an environmental score is needed,ghgironmental equation will combine the
environmental metrics with the temporal score tmpce an environmental score ranging from 0 to 10.
For the purpose of this paper, we give below tree laetric equations only.

Software Security Metrics

Rigorous measurement of software security can geosubstantial help in the evaluation and
improvement of software products and processes.edexy little agreement exists about the meaning
of software security and how to define softwarauség We define software security metrics based on
the representative weakness of the software asrshrothie formulas below:

m
sSM(s) => (P, xW,) (@

n=1
WhereSM(s)stands for the security metrics for the softwarandWi (i = 1, 2, ..., m) are the severity
of those representative weakness in the softediete a software product may have many
weaknesses and flaws. Here “representative” rédetsose weaknesses that lead most vulnerabilities
that may be exploited by attackers. Suppose th&mwesa corresponding Wnhask vulnerabilities
and their corresponding CVSS [1] base score¥ar&/2 ..., Vk The severity of this weaknes&n,is
defined as the average score of them, as dematsirathe formula (2) below.

K
2V
— =1
In formula (1), eacli (i = 1, 2, ..., m) represents the risk of the coroegfing weakness. We use the
percentage each representative weakness occims avérall weakness occurrences to calcilastes
the formula (3) below.

p =N
>R

WhereRnis the frequency of occurrences for each represemtaeakness over a span of time in

®)

months, as illustrated in formula (4) below, whigris the number of weaknesses, &his the number
of months.

Rn_M_ 4)

To make the value of software security met8d4(s)to range from 0 to 10, we require that the
following formula (5) hold forPn.

Y P =1 (5)

As shown in the formulas above, we define softvea@urity metrics based on trepresentative
weaknesses of the software. For a given piecefofa®, we first find out those typical weaknesses
reported in Common Weakness Enumeration (CWE)rfdlated to the software and calculate the
number of wulnerabilities caused by these weakiseSmme weakness causes more vulnerabilities than

others. We pick up those weaknesses that causevoostabilities as our “representative
weaknesses”. After identifying the representatigaknesses for the software, we incorporate the
severity of representative weaknesses into thaisgouetrics. The severity of a vulnerability is
captured by calculating the percentage of occuazn€ this vulnerability compared with the total
occurrences of all vulnerabilities. We use the agerof CVSS [1] base scores that are from the CVE
[7, 9] lists in a specific version of the softwahethe equation (2) represents the CVSS base score
for the vulnerability in the CVE list. The paramekein equation (4), however, represents the number
of weakness as showed in [8].

The examples given in the following sections dertrates how to obtain software security metrics

based on their vulnerabilities.

Sample Application

Example 1: Mozilla Firefox 2

1. Let's first find out the top five weaknesses listedh [8] leading to most vulnerabilities as

shown in the following table:

The name of representative weakness in the
Mozilla Firefox 2

The amount of vulnerabilities that are caused
by the corresponding weakness in the Mozilla
Fire Fox 2

1. Input Invalidation 13

2. Cross-site scripting (XSS) 14
3. Insufficient Information 12
4.Resource Management Error 12
5. Permission, Privilege, and Access Control 10

2. Then for each weakness, we find out those vulnerdiiies and their CVSS base scores.

1. Input Invalidation

CVE ID CVSS BASE SCORE
1.cve-2008-2933 2.6
2.cve-2008-2809 4.0
3.cve-2008-2805 5.0
4.cve-2008-2806 7.5
5.cve-2008-0414 4.3
6.cve-2007-5691 4.3
7.cve-2007-5339 4.3
8.cve-2007-4841 9.3
9.cve-2007-1362 4.3
10.cve- 2007-2292 4.3
11.cve-2006-6971 5.0

12.cve-2006-2894

4.0

13.cve-2007-5340

4.3

2. Cross-site scripting (XSS)

CVE ID CVSS BASE SCORE
1.cve-2008-4066 4.3
2.cve-2008-4065 4.3
3.cve-2008-2800 4.3
4.cve-2008-2808 4.3
5.cve-2008-1234 4.3
6.cve-2008-1243 4.3
7.cve-2008-0416 4.3
8.cve-2008-0415 4.3
9.cve-2007-6589 4.3
10.cve- 2007-5947 4.3
11.cve-2007-5947 4.3
12.cve-2007-5415 4.3
13.cve-2007-3670 4.3
14.cve-2007-0995 4.3

3. Insufficient Information

CVE ID CVSS BASE SCORE
1.cve-2008-4062 10.0
2.cve-2008-2806 7.5
3.cve-2008-2785 9.3
4.cve-2007-5959 9.3
5.cve-2007-3845 9.3
6.cve-2007-3734 9.3
7.cve-2007-3735 9.3
8.cve-2007-3737 9.3
9.cve-2007-3738 9.3
10.cve- 2007-0994 6.8
11.cve-2007-0775 3.7

12.cve-2007-6398

6.8

4.Resource Management Error

CVE ID CVSS BASE SCORE
1.cve-2008-2798 10.0
2.cve-2008-2799 10.0
3.cve-2008-2811 10.0
4.cve-2008-4062 10.0
5.cve-2008-2419 4.3
6.cve-2008-1380 9.3
7.cve-2008-1236 6.8
8.cve-2008-1237 6.8
9.cve-2008-0413 9.3
10.cve- 2008-0419 9.3
11.cve-2007-5896 7.1
12.cve-2008-0412 9.3

5. Permission, Privilege, and Access Control

CVE ID CVSS BASE SCORE
1.cve-2008-4060 7.5
2.cve-2008-4059 7.5
3.cve-2008-4058 7.5
4.cve-2008-3836 7.5
5.cve-2008-3835 7.5
6.cve-2008-2802 7.5
7.cve-2008-2803 6.8
8.cve-2008-2810 6.8
9.cve-2007-3285 6.8
10.cve- 2007-0802 6.4

3. We identify the weakness, the vulnerabilities, antheir frequencies of occurrences in

the software.

The name of the

The total amount of

The span of time

The probability of

weakness CVE lists each weakness’s
(mm/yyyy) occurrence (Rn)=K/M
(K)
(M)
1. Input Invalidation K=13 02/2007-07/2008 R1=13/17

M=17(Months)

2. Cross-site scripting | K=14 02/2007-09/2008 R2=14/19
(XSS)

M=19(Months)
3. Insufficient K=12 12/2006-09/2008 R3=12/21
Information

M=21(Months)
4.Resource K=12 11/2007-09/2008 R4=12/10
Management Error

M=10(Months)
5. Permission, K=10 02/2007-09/2008 R5=10/19
Privilege, and Access
Control M=19(Months)

4. Based on these data, we could calculate the averagfaCVSS base scores for those

vulnerabilities and generate the percentage of eackeakness in the software:

The name of the weaknessep

The severity of the
weaknes$The average of
CVSS BASE SCORES for
the CVE lists that are caused
by the corresponding

The percentage of each weakness in

the software

(Pn)=Rn/ (R1+R2+....Rn)

weakness)
(Wn)
1. Input Invalidation W1=4.86 R1/(R1+R2+R3+R4+R5)=P1
P1=25935/128853
2. Cross-site scripting W2=4.30 R2/(R1+R2+R3+R4+R5)=P2
P2=24990/128853
3. Insufficient Information W3=8.32 R3/(R1+R2+R3+R4+R5)=P3
P3=19380/128853
4.Resource Management W4=8.51 R4/(R1+R2+R3+R4+R5)=P4

Error

P4=40698/128853

5. Permission, Privilege, and
Access Control

W5=7.18

R5/(R1+R2+R3+R4+R5)=P5

P5=17850/128853

5. We could calculate the security metric score basesh the formula (1):

The Final ScoreW1*P1+W2*P2+W3*P3+W4*P4+W5*P56.7

Example 2: Microsoft Internet Explorer 6

1. Find out the top five weaknesses listed in [8] le@nh to most vulnerabilities as shown in

the following table:

The name of weakness in the Microsoft
Internet Explorer 6.

The amount of vulnerabilities that are caused
by the corresponding weakness in the
Microsoft Internet Explorer 6.

1. Buffer Error 8
2.Code Injection 11
3. Resource Management Error 10

2. Then for each weakness, we find out those vulnerdibies and their CVSS base scores.

1. Buffer Error

CVE ID CVSS BASE SCORE
1.cve-2008-3014 9.3
2.cve-2008-3012 9.3
3.cve-2007-5348 9.3
4.cve-2008-1442 9.3
5.cve-2007-4790 7.5
6.cve-2007-3481 5.0
7.cve-2007-2222 9.3
8.cve-2003-1484 4.3

2.Code Injection

CVE ID CVSS BASE SCORE
1.cve-2008-1085 9.3
2.cve-2008-1086 9.3
3.cve-2008-1368 4.3
4.cve-2008-0076 9.3
5.cve-2008-0078 9.3
6.cve-2007-5456 7.5
7.cve-2007-3892 7.5

3.Resource Management Error

CVE ID CVSS BASE SCORE
1.cve-2008-3476 9.3
2.cve-2008-3475 9.3
3.cve-2008-3013 9.3
4.cve-2008-2254 9.3
5.cve-2008-2255 9.3
6.cve-2008-2257 9.3
7.cve-2008-2258 9.3
8.cve-2008-0077 9.3
9.cve-2008-3903 6.8
10.cve- 2008-3041 9.3

3. We identify the weakness, the vulnerabilities, antheir frequencies of occurrences in the

software.

The name of the The total amount of The span of time The probability of
weakness CVE lists each weakness’s
(mm/yyyy) occurrence (Rn)=K/M
(K)
(M)
1. Buffer Error K=8 12/2003-09/2008 R1=8/57
M=57(Months)
2.Code Injection K=11 12/2004-04/2008 R2=11/40
M=40(Months)
3.Resource K=10 08/2007-10/2008 R3=10/14
Management Error
M=14(Months)

4. Based on these data, we could calculate the averagfeaCVSS base scores for those

vulnerabilities and generate the percentage of eackeakness in the software:;

The name of the weaknessep

The severity of

weakness)

(Wn)

weaknes$The average of

CVSS BASE SCORES for
the CVE lists that are caused
by the corresponding

The percentage of each weakness in
the software.

(Pn)=Rn/ (R1+R2+....Rn)

1. Buffer Error W1=7.91 R1/(R1+R2+R3)=P1
P1=2240/18029
2.Code Injection W2=8.22 R2/(R1+R2+R3)=P2
P2=4389/18029
3.Resource Management W3=9.05 R3/(R1+R2+R3)=P3
Error
P3=11400/18029

5. We could calculate the security metric score basesh the formula (1):

The Final ScoreW1*P1+W2*P2+W3*P3- 8.7

Example 3: Microsoft Internet Explorer 7

1. Find out the top five weaknesses listed in [8] leam to most vulnerabilities as shown

in the following table:

The name of weakness in Microsoft Internet
Explorer 7.

The amount of vulnerabilities that are caused
by the corresponding weakness in the
Microsoft Internet Explorer 7.

1. Input Invalidation 6
2.Code Injection 8
3. Resource Management Error 12

2. Then for each weakness, we find out those vulnerdhies and their CVSS base

Scores.

1. Input Invalidation

CVE ID CVSS BASE SCORE
1.cve-2008-2256 9.3
2.cve-2008-2259 9.3
3.cve-2008-4071 5.0
4.cve-2008-1544 5.8
5.cve-2008-1545 4.3
6.cve-2007-3896 9.3

2.Code Injection

CVE ID CVSS BASE SCORE
1.cve-2008-1085 9.3
2.cve-2008-0076 9.3
3.cve-2008-0078 9.3
4.cve-2007-5344 6.8
5.cve-2007-5456 7.5
6.cve-2007-3892 7.5
7.cve-2007-3550 7.8
8.cve-2007-1751 9.3

3.Resource Management Error

CVE ID CVSS BASE SCORE
1.cve-2008-4381 5.0
2.cve-2008-4127 4.3
3.cve-2008-3902 9.3
4.cve-2008-2254 9.3
5.cve-2008-2255 9.3
6.cve-2008-2257 9.3
7.cve-2008-2258 9.3
8.cve-2008-0077 9.3
9.cve-2008-3903 6.8
10.cve- 2007-5347 6.8
11.cve- 2007-3893 6.8
12.cve- 2007-3041 9.3

3. We identify the weakness, the vulnerabilities, antheir frequencies of occurrences

in the software.

The name of the The total amount of The span of time The probability of
weakness CVE lists each weakness’s
(mm/yyyy) occurrence (Rn)=K/M
(K)
(M)
1. Input Invalidation K=6 10/2007-09/2008 R1=6/11
M=11(Months)
2.Code Injection K=8 06/2007-04/2008 R2=8/10

M=10(Months)

3.Resource K=12

Management Error

08/2007-10/2008

M=14(Months)

R3=12/14

4. Based on these data, we could calculate the averagfeaCVSS base scores for those

vulnerabilities and generate the percentage of eackeakness in the software:

The name of the weaknessep

The severity of
weaknes$The average of
CVSS BASE SCORES for
the CVE lists that are caused
by the corresponding

The percentage of each weakness in
the software

(Pn)=Rn/ (R1+R2+....Rn)

weakness)
(Wn)
1. Input Invalidation W1=7.17 R1/(R1+R2+R3)=P1
P1=210/848
2.Code Injection W2=8.35 R2/(R1+R2+R3)=P2
P2=308/848
3.Resource Management W3=7.90 R3/(R1+R2+R3)=P3

Error

P3=330/848

5. We could calculate the security metric score basesh the formula (1):

The Final ScoreW1*P1+W2*P2+W3*P3 7.9

Conclusion and Discussion

It is widely recognized that metrics are importeminformation security because metrics can be an
effective tool for information security professid&#o measure the security strength and levelbef t
systems, products, processes, and readiness &saddrcurity issues they are facing. Metrics cam al
help identify system vulnerabilities, providing dance in prioritizing corrective actions, and nagsi
the level of security awareness within the orgaioma With the knowledge of security metrics, an
information security professional can answer tylpiggestions like “Are we secure?” and “How secure
are we?” in a formal and persuadable manner. FEl@rét agencies, a number of existing laws, rules,
and regulations cite security metrics as a requergnirhese laws include the Clinger-Cohen Act,
Government Performance and Results Act (GPRA), owent Paperwork Elimination Act (GPEA),
and Federal Information Security Management AcBKfA). Moreover, metrics can be used to justify
and direct future security investment. Securityriogtcan also improve accountability to stakehader
and improve customer confidence.

However, the term “security metrics” is often amlogs and confusing in many contexts of discussion
in information security. Some guiding standards good experiments of security metrics exist, such
as FIPS 140-1/2, ITSEC, TCSEC, Common Criteria (@) NIST Special Publication 800-55, but
they are either too broad without precise definsicor too narrow to be generalized to cover atgrea
variety of security situations. Metrics are quaalife measurement. Security metrics are quantiativ
indicators for the security attributes of an infation system or technology. A quantitative
measurement is the assignment of numbers to thieustts of objects or processes. For information
security professionals, we are interested in maagtine fundamental security attributes of

information such as confidentiality, integrity, aadailability.

Of course, perfect security is unachievable foorimfation systems. The key of information security
practice is to reach a goal as close as possiltletperfect security. In this paper, we present a
practical approach to define software security it&tiaking into consideration of time as well.
However, our time here in this paper is a coaramgf time, namely, we count the occurrences of
vulnerabilities over a time span in months.

Another contribution of this paper is to assocsftware weakness and wvulnerabilities with security
metrics. Software vulnerabilities exist due to faand errors in design, coding, testing, and
maintenance of software. These vulnerabilitiesdda exploited by attackers to compromise the
computing system where the software is runningfterefore, the number of vulnerabilities and the
severity of those vulnerabilities should be impettadicators for software security and
trustworthiness. The examples provided in the pte/section confirm to our argument. The more
vulnerabilities a software product has, the lovesel of trustworthiness this software product fae
more severe vulnerabilities a software product thes|ess secure this software will be. In our
examples provided in the previous section, we laafesv sample software products and their security
metrics calculated as shown in the following talalbich seems to match our experience and published
security advisories.

Software Product

Security Metrics

Mozilla Firefox 2 6.7
Microsoft IE 6 8.7
Microsoft IE 7 7.9

We strongly believe that common weakness and expe$CWE) and common vulnerability

enumerations (CVE) provide importance source ffiinsoe security metrics.

Reference

[1] Peter Mell, Karen Scarfone, and Sasha Romanoskigriplete Guide to the Common Vulnerability Scoring
System (CVSS), Version 2.0, Forum of Incident Respoand Security Teams,
http://www.first.org/cvss/cvss-guide. htig@uly 2007).

[2] J. A. Wang, M. Xia, and F. Zhang, “Metrics for Infieation Security Vulnerabilitieslournal of Applied
Global Researchyolume 1, No. 1, 2008, pp. 48-58.

[3] J.A.Wang, Fengwei Zhang and Min Xia, “Temporal Mestifor Software Vulnerabilities,” iRroceedings of
CSIIRW'08 May 12 — 14, 2008, Oak Ridge, TN, USA.

[4] J. A. Wang, “Information Security Models and Mesticin Proceedings of 48ACM Southeast Conference
Volume 2, pp. 178 — 184. ISBN: 1-59593-059-0. Ma&26B5, Kennesaw, GA.

[5] Elizabeth Chew et.al., Guide for Developing Perfanoe Metrics for Information Securitf] ST Special
Publication 800-8pMay 2006

[6] National Institute of Standards and Technology,idhal Vulnerability Database, Common Vulnerability
Scoring System Calculatdritp:/nvd.nist.gov/cvss.cfm?calculai@ccessed by October, 2008).

[7] National Institute of Standards and Technologytjdwial VVulnerability Database, Search CVE and CCE
Vulnerability Database,http://web.nvd.nist.gov/view/vuln/search?execute?s1(Accessed by October,
2008)

[8] The MITRE Corporation, Common Weakness EnumeraGdE Comprehensive Dictionary(1.0.1),
http://cwe.mitre.org/data/slices/2000.higAccessed by October, 2008)

[9] The MITRE Corporation, Common Vulnerability and Bspres, CVE Listhttp://cve.mitre.org/cve/cve.html
(Accessed by October, 2008)

[10] The MITRE Corporation, Common Attack Pattern Enuatien and Classification, CAPEC Dictionary
(Release 1.1)itp://capec.mitre.org/data/dictionary.ht(Accessed by October, 2008)

[11] Michael Gegickl, Laurie Williams, Mladen Vouk, “Riietive Models for Identifying Software Components
Prone to Failure During Security Attacks”, Departingf Computer Science, North Carolina State
University, October 28 2008,
https://buildsecurityin. us-cert.gov/daisy/bsi/dg&lbest-practices/measurement/1075-BSkAdEessed by
November, 2008)

[12] Chris Wysopal, Software Security Weakness ScoNejricon 2.0, August 7, 2007.
Www.securitymetrics.org/content/attachMetric on2.0/Wysopametricon2.0-softwarewveaknessscoring.ppt
(Accessed by October, 2008)

[13] Mell P. and Quinn S, “Automating Compliance ChegkiMulnerability Management, and Security

Measurement,” 2007 Information Assurance Workshag\S) Presentation, 2007.

[14] NIST, Information Security Automation Program, Aottating VVulnerability Management, Security
Measurement, and Compliance, Version 1.0 Betaseewon May 22, 2007.

[15] The MITRE Corporation, Common Weakness Enutmamghttp://cwe.mitre.org/
(Accessed on October 20, 2008)

[16] J. A. Wang, “Information Security Models ancetvics”, inProceedings of 48ACM Southeast Conference
Volume 2, pp. 178 — 184. ISBN: 1-59593-059-0. Ma&2685, Kennesaw, GA

Hao Wang

I'm studying at Southern Polytechnic State Univgras a senior student. I'm currently doing researc
about information security with Dr. Wang, who ig t@hair of IT Department at Southern Polytechnic
State University. Mailing address: 1494 CollingwdadSE, Marietta, GA. Emaihwang@spsu.edu

Andy Wang

I'm the Chair of IT Department at Southern PolytgctState University. My research interests include
Embedded Software Engineering, Component-Based|@a@vent, Information Security, Computer
Game Design and Implementation, Formal Methodsamg@iter Engineering, Software Reuse and
Metrics, Web Services, and Computer Science Edutdtiam a member ¢gfCM (Association for

Computing Machinery)member ofEEE Computer Sociefymember of EEE Technical Council on
Software Engineeringnember ofZUR (The Council on Undergraduate Resegmi@mber ofCCSC
(The Consortium for Computing Sciences in Colleg®ailing address: 1160S Marietta Pkwy,
Marietta, GA. 30060. Email: jwang@spsu.edu

