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Abstract - Deficiencies in algorithm insight and mathematics manipulation abilities in college students have been 
the focus of recent education initiatives because they may be critical factors in students’ problem-solving 
development. This problem has been systematically studied by Redish and Tuminaro for Physics-major students, 
but has not yet been investigated for other science and engineering majors. The works of Redish et al. are discussed 
on their relevance to engineering education: they identified six different types of difficulties with assigning meaning 
to the mathematics in problem context; four of them apply to engineering problem solving. Their work on 
identifying the most common student problem-solving schemes is reviewed. This paper also discusses the work of 
the author and colleagues on the disconnection between the classic math teaching with “x and y” to the use of other 
variable names in engineering courses. Students lack adequate training on solving actual applied-math problems in 
context, because they largely use “formula pattern matching” instead of relating data and unknowns to implied 
concepts, and because they interpret data by relating it to symbols with which they are familiar. Initiatives (i.e., 
curricula and class content changes) and available teaching tools to overcome such deficiencies are reviewed, and 
recommendations for their use are made. It is concluded that there is a substantial body of knowledge that attempts 
to understand students’ math manipulation abilities, but experiences on application of such knowledge in the 
classroom are scarce. The author believes that the knowledge reviewed can help develop teaching environments and 
interventions to more effectively teach some engineering subjects. 
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INTRODUCTION 

Deficiencies of algorithm insight and manipulation abilities in college students have been the focus of recent 
education research, because they can be critical factor for problem-solving development in physics and engineering. 
For instance, one such critical ability is symbol manipulation. Redish [Redish,1] discussed the difficulties that 
physics teachers observed when students are asked to apply mathematics concepts to problem solving; engineering 
faculty often observe those deficiencies. Students must take mathematics as prerequisites to their study of physics 
and engineering classes, but engineering instructors are often surprised by how little math students seem to know. It 
should be recognized, however, that from their successful performances in their math classes, students must have 
acquired the basic math concepts.  

The author’s interest in this educational concern started with a systematic study with colleagues at Georgia Southern 
University [Clark,2]. They investigated if using the classic mathematics teaching with “x and y” as variable names, 
rather than other names as in engineering courses, could be a significant factor in students’ performance with 
engineering problem solving. A ten problem quiz was designed in two versions: one using only x and y, the other 
using a wider range of variable names. The problems were identical in all other respects, and none of the problems 
was calculus-based. The quiz was given to one hundred twenty-four students in first, second, and third year 
Engineering and Engineering Technology majors at Georgia Southern University. Students taking the xy version of 
the quiz scored significantly higher than students taking the mixed-variable quiz (one of the questions, however, did 
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not use any variable at all, and no significant difference was observed on students’ performance when solving this 
control question). Students with higher class rankings (juniors and seniors) showed a lower difference between the 
quiz versions than did students classified as freshmen or sophomores. The disconnection between mathematics 
teaching with x and y as preferred variables and the use of more varied and descriptive names in engineering and 
technology courses may partially explain some students difficulties.  

In a study of the knowledge and application of college algebra, Conway Link
 
[Conway Link,3] asked students to 

solve for the radius of a sphere using the sphere’s volume formula. He found that only 34.6% of the surveyed 
students were able to produce a correct answer, but that the number of mathematics courses taken after College 
Algebra seemed to increase the likelihood of a correct answer. He ascribed this to students’ encountering an 
increasing number of examples and problems with “non-traditional” variables and formulas as they progress 
through their coursework. On discussing the problems encountered in teaching mathematics to engineering students, 
Sazhin [Sazhin,4] noted that changing a basic linear equation on x as variable and letter as constants, to a version on 
greek-letter symbols prevented most students from solving it for the unknown. He ascribed this to students’ 
tendency to memorize equations and their manipulation in a particular notation. In general, a disconnection is seen 
between the student’s physical understanding of the problem and the mathematical model manipulation. Klebanoff 
et al. [Klebanoff,5] speculated that the type of work that students are asked to perform in mathematics classes does 
not prepare them for applying mathematical concepts in engineering contexts. They noted the compartmentalization 
that exists in which students see little substantive relationship between math, science and engineering.  

These experiments indicate that college students may largely use “formula pattern matching” to the employed 
symbols as their main method of applying math. The author and colleagues’ previously referred experiment 
[Clark,2] tends to back this hypothesis. But other studies indicate that a deeper disconnection between doing math 
and using math in science may also be at the root of this problem. For instance, experienced professionals (e.g., 
engineers, physicists, etc) use their knowledge to see “meaning of engineering things” (or of “physics ones”) in the 
“symbols of math” when they interpret equations [Redish,6], while student would not. This paper reviews some 
relevant works that help understanding deficiencies in algorithm insight and mathematics manipulation abilities in 
college students. 
 

LITERATURE REVIEW ON UNDERSTANDING AND USE OF KNOWLEDGE IN APPLIED SCIENCES 
As engineering instructors, we rely on curriculum design to make sure that students know the basic math concepts 
needed for our classes (and we can assume they do from their success in math classes). But usual engineering 
curricula place very little or no emphasis on students’ deep understanding or use of such concepts until the first 
engineering classes (which are usually at the sophomore level). On investigating students’ understanding of 
knowledge, the work of Sherin [Sherin,7] attempts answering the fundamental question: What does it mean to 
understand a equation? He discusses how successful students learn to understand what physics equations say in a 
fundamental sense; in this, he postulates that they have a feel for expressions, and that this guides their work. More 
specifically, students would learn to understand physics equations in terms of a vocabulary of elements that are 
“symbolic forms”. Each of these symbolic forms, that are not just symbols but may be combinations of them, would 
associate a simple conceptual scheme with a pattern of symbols in an equation. Generalizing Sherin’s conclusions to 
applied sciences and engineering, math instruction should be focus toward helping students acquire this “symbolic” 
understanding.  

Sherin and other researchers also correctly note that college students enter science instruction with quite a lot of 
knowledge about the basic world, and that this knowledge may have a strong impact on their learning of more 
formalized (e.g., math-based) science. The study of this prior knowledge has become a research problem of its own. 
It is usually embodied in the so-called intuitive physics or naïve physics knowledge research. This type of research 
includes attempts to prove that students possess their own theories of physics [McKloskey,8], and discussions of 
how these theories would affect their understanding of more formalized science approaches. Clement 
[Clement,9,10] and McDermott [McDermott,11] extensively listed students’ difficulties and misconceptions that can 
deeply affect the understanding of equations. It seems apparent that engineering students are not an exception to this 
phenomenon, but the impact of their misconceptions on learning engineering sciences has not been studied. 
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STUDENTS’ DIFFICULTIES WITH MATH MODELING IN APPLIED SCIENCES 

Extensive pedagogical research proves that students are weak at linking the mathematical world and the real world, 
thus supporting a view that students need much stronger experiences in building connections between real world 
and mathematical world [Ikeda,12, and Klymchuk,13]. The work of Crouch and Haines [Crouch,14] discusses and 
attempts explaining the problems faced by students in linking mathematical models to real-world applications. Their 
study is based on student responses to multiple-choice questionnaires on mathematical modeling problems, student 
reflective questionnaires, and subsequent interviews. It also investigates the processes and behaviors used by 
students to solve such problems. There are also initiatives that attempt to bridge this gap between math and real 
world in the teaching: Hiebert et al. [Hiebert,15] proposes a reform in curriculum and instruction based on allowing 
students to “problematize” the subject: students should be engaged in resolving problems. In mathematics, this 
principle has been traditionally studied under the umbrella of problem solving, while problem solving in curriculum 
development has been largely influenced by a distinction between acquiring knowledge and applying it. Hiebert et 
al, however, proposed the alternative, but presently prevalent principle of "reflective inquiry." They argue that such 
an approach would facilitate students' understanding, and that they will be more likely to see appropriate 
applications if they spend considerable time working in applied situations. Students would also acquire domain-
specific knowledge while doing so. Intriguing or relevant problems will get the interests of students and engage 
them in mathematics.  

The issue of improving student’s modeling capabilities has been recently addressed by the introduction of high-
school-senior and college-freshman courses which focus on problem modeling. Watson [Watson,16] shows an 
example of improving teaching of probability concepts in Australian schools through newspapers and the media. A 
typical college curriculum development implementing such pedagogy is that of a Mathematical Modeling class as 
an alternative for the classic College Algebra. But some problems should be consider before applying math-
modeling based initiatives, as that of students’ capabilities on applications and modeling tasks would likely to be 
influenced by the teaching approach, the context and situation in which the mathematical modeling task is 
embedded, student and teacher motivation, engagement with and attitudes towards modeling work, and the amount 
of practice and experience students had on modeling tasks [Niss,17]. Since teamwork and projects are common 
features of undergraduate programs in engineering and technology, it is appropriate to consider the possible effects 
of group-work and its organization on mathematical tasks. Research work also showed [Klymchuk,13] that while 
most students found application problems are more interesting, more than half of the students preferred tests that 
consist of pure mathematics problems because they were easier to pass, and with application problems they had 
difficulty moving from the word problem to mathematical language.  

These changes towards math modeling teaching, however, have not been formally implemented for majors that 
require Calculus as basic math. That may be because there is tradition among physics and engineering faculty that 
Calculus teaching requires focus not only on the formulation of the mathematical model, but also strongly on 
abstraction and the higher-concepts that are needed for advanced-math classes. The work of Klebanoff and Winkel 
[Klebanoff,5] has compiled a collection of 91 complex Calculus-based problems in mathematics that are related to 
science and engineering; they are available at their website: http://www.rose-hulman.edu/Class/CalculusProbs. 
There is no formal evaluation if the use of these technology-based problems could improve student’s application of 
their Calculus knowledge, but there seems to be a common agreement among engineering educators that student 
should build applicable-math acknowledge and applied-problem solving expertise. The following section of this 
paper discusses some aspects of the understanding and use of mathematics in applied sciences. 
 

UNDERSTANDING AND USE OF MATH IN APPLIED SCIENCES 
There are fundamental differences in the understanding and use of math, and particularly of the symbols, between 
the pure mathematics and applied sciences, as the engineering and the physics. Redish [Redish,1] pointed out that a 
big difference can be realized from the purpose of math within each science: while mathematics is interested in 
expressing, manipulating and deriving abstract relationships, applied sciences use math mainly to represent meaning 
of quantities (and not only the quantities) and its relationships for particular systems.  
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Redish [Redish,6] also discussed that while mathematicians have a very strictly formalized language, applied 
sciences (and in particular engineering and physics) use much more flexible, “context-dependent” formalisms. By 
comparison to pure math, formulas of applied sciences have many different kinds of constants (i.e., numbers (2, e, 
π), universal dimensioned constants, problem parameters, and initial condition values) and they often blur the 
distinction between constants and variables; they use symbols to stand for objects  rather than quantities (e.g., 
symbols or even math-concept interpretation may be context-dependent). Redish also noted that applied sciences 
put the emphasis on physical meaning or math formalism for the purpose of developing a new relationship, 
whatever would be more useful for the goal.  

From the point of view of using math to solve applied-science problems, one of the most dramatic differences is the 
way applied sciences put “physical-meaning” into symbols, while pure mathematics would avoid that as much as 
possible. And engineering and physics often use their idea of what quantity a symbol represents to decide how the 
math should be interpreted. In that, math-language in the sciences is context-dependent as human languages are. But 
there is an important practical reason for “loading” contextual meaning onto symbols, particularly in engineering: 
because it allows to work with complex mathematical quantities and relationships while avoiding the mathematical 
rigor which would be strictly required. One example clear to engineers is the treatment of concentrated forces (or 
simply “forces”) in solid mechanics. In the typical analysis of, for instance, shear force in a simple-supported beam, 
the engineering approach will first develop a strict-mathematics function of shear force for portions of the beam 
between these concentrated forces. But we will then treat such forces very loosely as “steps in the shear-force 
diagram” with disregard of any more strict math treatment of such discontinuities (a mathematician would probably 
use a step-function, as the delta-Dirac function, to represent the concentrated force). Engineers usually “handle” 
complicated math issues by “switching” from math to interpretation or meaning, or even to conventions we built 
upon meaning. To a great extent, engineers use and switch between two parallels models, the mathematical one and 
the physical-contextual one, on the usually correct assumption that they can be manipulated in parallel. Another 
possible example of such methodology is the engineering solving of simple mechanics problems involving friction, 
where engineers deal with the physical change between “static friction” to “dynamics friction” coefficients by 
making an assumption about the outcome of the problem, that they check against the result (instead of, for instance, 
using the Heaviside function θ(hf - Φ) to mathematically represent the presence of a threshold).  

One of the first researchers to describe the process of modeling in such a way that it could be used for teaching 
applied-mathematics was Pollak [Pollak,18]. He represented the interaction between mathematics and the real world 
with the scheme shown in Figure 1, which is known as the “circle of modeling.” 
 

 
Figure 1. The “circle of modeling” (from [Pollak,18] ) 

 
In this dichotomy of mathematics, according to Pollak, “classical applied mathematics” and “applicable 
mathematics” are two intersected but not equal sets. There are topics from classical mathematics with great 
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theoretical interest but without any yet visible application, while at the same time there are branches of mathematics 
with many practical applications, but they are not characterized by many people as classical (e.g., probability and 
statistics, linear programming, etc). One important feature of Pollak’s scheme is the direction of the arrows, 
suggesting a loop between the “other world” (including all the other sciences and the human activities of everyday 
life) and the “universe” of mathematics, and that would be the substance of what we call mathematical modeling. 
What engineers very often do is a “multiple looping”, or a parallel development, between the applied math and the 
real world models. Hypotheses regarding the use of this circle of modeling are discussed by Voskoglou 
[Voskoglou,19]. In his paper he investigated the circle of modeling as it is employed in the classroom when the 
teacher gives solutions for the students and then it measures the mathematical model building abilities of them. In 
summary, realizing the complexity of the actual math methodologies that engineers and physicists use for solving 
problems can help understanding of why students seem to have deficiencies on using the math in our classes. 
 

COLLEGE STUDENTS’ TYPICAL DEFICIENCIES WHEN USING SYMBOLS OR EQUATIONS 
It seems that college students see little relationship between symbolic manipulations in math to the type of concept-
manipulations required in engineering or physics problems. Redish [Redish,1] noted that, in a typical calculus-based 
physics class, the equations shown in the first week have from three to six symbols or more, and they specified a 
connection with something physical, while equations with a single or two symbols were typical in Calculus classes. 
But he also found [Redish,6] that college students often missed and did not use for problem-solving the meaning 
carried by used symbols or equations. He observed six different types of difficulties with assigning meaning to the 
mathematics in a problem context: four of these difficulties often relate to typical deficiencies encountered with 
engineering student problem solving, and are summarized in the following table (the two other deficiencies are 
“being able to parse equations” and “assigning consistent coordinate references to time and space”).  

 
Student difficulties, and 

eficiencies with: d
Examples where students may 
how such deficiencies s

Teaching strategies and proactive actions 
uggested in the literature s   

noting variations 
associated to similar 
symbols or equations 

Not realizing the different 
meaning of parentheses as in:     
F (x,y) = k (x+ y) 

Expose students earlier to variety of variable 
names and notations [Clark,2]. 

relating symbols to 
variables, measurements 
and their meaning 

Students replace symbols by 
numbers into equations as much 
as possible. They do not perform 
dimensional analysis. 

Require that students perform unit check and 
reality checks of the results. Ask them to interpret 
their results and to evaluate whether the model is 
adequate. 

understanding equations 
as relationships 

Understanding each equation as 
a “problem” in which the goal is 
“to find the value of x (or of the 
unknown)”. Not recognizing 
equations as implicit functions 
between the variables. 

Students should be trained in developing explicit 
expressions of each variable as function of the 
others, and in plotting them. 
Teach them to use structured knowledge-mapping 
for problem solving, as the Fuller-Polya Diagram 
[Molina,20,23]. 

treating equations as 
representations of reality 

Students replace symbols by 
numbers into equations as early 
as possible, replacing meaning 
by constant values. Obtained 
results are unreasonable large or 
small. 

Encourage students to formalize their problem 
solving strategies, mainly by including 
sketches/diagrams, written definition of data and 
unknowns, and of meaning of used symbols.  
Encourage students to work with symbols in the 
limiting cases problem (i.e., if variables become 
infinite, or zero). Teach heuristics approaches 
[Sickafus, 21] and the GENI idea [Wales,22]. 

Table 1. Students’ difficulties with assigning meaning to math in problem context, and suggested teaching strategies 

Table 1 refers to some solutions to the listed deficiencies as suggested in the literature. Some of these solutions 
specifically address the needs for improving student’s modeling capabilities and to make them familiar to variety of 
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variable names and notations. Redish [Redish,6] noted that students in introductory physics have a strong 
inclination to put numbers into their equations as soon as they know them. This makes the equations look more like 
the equations in their math classes and makes them seem more familiar (e.g., helping the typical “pattern matching” 
technique for problem solving). They also tend to drop the units; therefore, they lose the advantages of using the 
units as a check on errors or inappropriate mixtures of units. It seems that a primary reason that seasoned problem-
solvers prefer to keep constants and data as symbols all the way to the end of a calculation, rather than putting 
numbers in at the beginning, is that they see equations as relationships among physical measurements. Table 1 also 
lists to some solutions to these deficiencies as suggested in the literature. Some of these solutions specifically 
address the need of improving student’s modeling capabilities.  

Research on problem-solving notes that good problems solvers sketch as early as possible graphs of possible 
relationships between involved variables and of their time evolution Molina [Molina,20,23] introduced in his 
sophomore mechanical-design classes a simple structured graphical method for problem solving, the Fuller-Polya 
diagram (FPD), that force students to see equations as relationships. FPD was outlined by Fuller [Fuller,24] from a 
Polya’s [Polya,25] suggestion and further formalized by Kardos [Kardos, 26]. It graphically organizes the variables 
and their relationships in the computation, including any non-algebraic procedures (i.e., a selection among discrete 
values, a value read from a table or graph, etc.), while placing no emphasis on formulas or procedures details. The 
FPD methodology defines the following elements and standard symbols (shown in Figure 2): variable is a known or 
unknown “value” (it may be a number, an interval or even a code that identifies a standard part), the symbol for 
variable is a circle (or oval shape) enclosing the variable name; reversible algorithm is a computation or a sequence 
of computations that can be carried out in any “direction”, even if algebra or mathematics manipulation may be 
needed to “reverse” such direction, the symbol for reversible algorithm is a square with an order number inside; and  
irreversible algorithm (or meta-operation) is a procedure that must be carried out only in a given “direction” (i.e., a 
double-entry table is in general an irreversible algorithm because the same output may result from different sets of 
inputs). The symbol for irreversible algorithm is a diamond with an order number inside, as presented in Figure 2. 

 
 
 

Variable symbol        Reversible algorithm symbol         Irreversible algorithm symbol   
 

Figure 2. Standard symbols for Fuller-Polya Diagram 
 

Flowlines connect each variable symbol to every algorithm symbol, where the variable value is used in, or produced 
from. Figure 3 presents a simple computation sketch and FPD that was developed by a student in the author’s class 
for multiple-leaf-spring computation; the calculation procedure can be found in standard computation handbooks. 
 

  

Figure 3. Sophomore engineering student work: computation sketch and FPD for multiple (n) leaf spring design. 
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In Figure 3, consecutive numbering for the reversible and irreversible algorithm symbols relates to corresponding 
algorithm descriptions that are listed on a side. Because the FPD does not need the details of formulas or procedures 
(but only includes them as relationships between the variables), to construct a FPD is enough to know that such 
relationships should exist (i.e., from physical reasoning) or that they can be established (i.e., by measurement and/or 
experiment). A list of variables names (and their descriptions) may be included. Several examples of FPDs were 
presented in the work of Kardos [Kardos,26], Molina [Molina,20,23], and Vidal [Vidal,27] . In particular, the work 
of Molina summarizes students’ opinions (surveyed by several metrics) about the usefulness of the idea; those 
opinions suggested that the introduction of the FPD in a sophomore design-class helped students seeing equations as 
relationships between physical values in applied-math problems. 
 

LITERATURE REVIEW ON COLLEGE STUDENTS’ PROBLEM SOLVING SCHEMES 

In modern educational theories, one of the dominant paradigms is constructivism, the idea that a student constructs 
new knowledge based largely on what that student already knows. The teacher’s role in the constructivist paradigm 
is to create environments that help students undertake this construction accurately and effectively. But to do this, the 
educator needs to know the content and the structure of the students’ existing knowledge. In the teaching of 
engineering, curriculum design makes sure that students have the knowledge contents to build upon them. But we 
place very little or no attention on the structure of knowledge or how they use this knowledge to construct new 
understanding. The various difficulties that students face when applying math knowledge to problem solving have 
been reviewed in previous sections of this paper. Tuminaro and Redish [Tuminaro,28] thoroughly researched the 
processes by which students typically attempt to solve problems (and arguably, to construct new knowledge).  

The approach of Tuminaro [Tuminaro,29] proposed a useful way of analyzing students’ problem solving behavior 
in terms of locally coherent goal-oriented activities, that they referred to as epistemic games. They define an 
epistemic game as: “a coherent activity that uses particular kinds of knowledge and processes associated with that 
knowledge to create new knowledge or solve a problem.” These heuristics games both guide and limit what 
knowledge students think is appropriate to apply at a given time, but in general students do not choose to play these 
games consciously neither can articulate what game they are playing. In his PhD dissertation research work, 
Tuminaro [Tuminaro,30] analyzed 11 hours of video data drawn from about 60 hours of videotapes of groups of 
students solving homework problems in a algebra-based physics class. He described six locally coherent 
organizational control structures (e.g., epistemic games) that he identified students using in these problem solving 
activities. His work [Tuminaro,28] also includes description and examples of each of these games. They are listed 
below from the most intellectually complex (and most likely to succeed on developing a correct solution), to the 
most primitive: 
(1) Mapping Meaning to Mathematics, 
(2) Mapping Mathematics to Meaning, 
(3) Physical Mechanism Game, 
(4) Pictorial Analysis, 
(5) Recursive Plug-and-Chug, and  
(6) Transliteration to Mathematics. 

First-four games may lead to acceptable solutions for many college-level problems. Last one, however, is an 
epistemic game in which students use worked examples to generate a result without developing a conceptual 
understanding of the examples. It is the commonly observed “pattern-matching” of formula to data, and it may lead 
to a correct solution if the set of data presented is as patterning as the one in the known example. The fifth game is a 
common (and usually unsuccessful) problem-solving scheme that leads to the so-called “plug-and-chug” cycle. This 
recursive scheme starts by identifying an equation that could solve the problem, to plug in it the available data; if 
the formula does not yields the result (or if there were no sufficient data), a new formula is sought and the cycle 
continues in the hope of a solution.  

Tuminaro [Tuminaro,30] postulates that their decomposition of students’ problem-solving in terms of epistemic 
games would allow instructors more clearly realize how students use their knowledge to construct new 
understanding, and would help to examine and guide their problem solving reasoning in more detail. He proposed 
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that further study of these epistemic games would be useful both in understanding how to teach strategies in 
problem solving, and in analyzing group behavior in the context of problem solving. 

CONCLUSIONS AND REMARKS 
This paper presented a review on several interconnected aspects of students’ understanding and use of math in 
applied sciences, their typical deficiencies when using symbols or equations, their difficulties with math modeling, 
and the typical problem-solving epistemic games they use. Some initiatives, teaching strategies and curriculum 
changes suggested in the literature also were reviewed. This work discussed key differences in the way applied 
sciences put “physical-meaning” into math, and why engineers have practical reasons for “loading” contextual 
meaning onto symbols. There is a substantial body of knowledge that attempts to understand engineering students’ 
algorithm insight and math manipulation abilities. But experiences are scarce on the use of such knowledge for 
improving students’ application of math, or for the teaching of problem solving. The author identified a few 
teaching strategies, proactive actions, and interventions that seem to help teaching some math-based engineering 
subjects. But it is apparent that application of such initiatives need to be carefully pilot in engineering curricula, and 
that rigorous study of learning outcomes is required to prove their effectiveness. The author particularly believes 
that math teaching based on early exposing students to problems of science and engineering could help them 
become better and more efficient problem solvers. 
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