
2019 ASEE Southeastern Section Conference

© American Society for Engineering Education, 2019

Maintaining Student-Authored Open-Source Software for More
Than 10 Years: An Experience Report

Zhewei Hu,1 Edward F. Gehringer,1 and Yang Song2
1North Carolina State University / 2University of North Carolina Wilmington

Abstract

Instructors who teach software engineering courses may struggle to come up with project ideas.
One approach is to use existing open-source software (OSS) projects as the code base on which
to build course projects. Contributing to OSS projects holds many benefits for students.
However, it is difficult for instructors to find specific open-source projects that are suitable for
software engineering courses. It is also challenging for the OSS core team to specify enough
course projects with a reasonable amount of work and offer consistent support during the
semester. In this paper, we, as both the teaching staff and the core team of one OSS project, share
our 10+-year experience on how to maintain student-authored open-source software with limited
resources. We also discuss the challenges instructors may encounter when they attempt to
maintain and run an application implemented by students, and what approaches they can adopt to
overcome these challenges.

Keywords

Open-source software, software engineering, open-source curriculum, project-based courses,
Expertiza

1 INTRODUCTION

Instructors who teach software engineering courses may have difficulty proposing ideas for
course projects. This situation may happen more frequently for instructors who teach advanced
undergraduate or graduate courses. This is because such courses need to focus more on object-
oriented design, and design patterns compared with CS1 or CS2 courses. One approach is to use
existing open-source software (OSS) projects as the code base on which to build course projects.
Contributing to OSS projects holds several benefits for students. However, it is difficult for
instructors to find specific open-source projects that are suitable for software engineering
courses. It is also challenging for the OSS core team to specify enough course projects with a
reasonable amount of work and offer consistent support during the semester.

In this paper, we, as both the teaching staff and the core team of one OSS project, share our 10+-
year experience on how to maintain a student-authored open-source software with limited
resources. During this decade, we have maintained a user base for our OSS application.
Meanwhile, students have kept making contributions to this OSS project semester after semester.
We discuss challenges that instructors may encounter when they attempt to maintain and run a
software application implemented by students, from four perspectives: 1) code quality, 2) code
review and deployment process, 3) infrastructure and 4) human resources. We also talk about
what approaches instructors could use to handle these challenges.

2019 ASEE Southeastern Section Conference

© American Society for Engineering Education, 2019

2 EXPERTIZA AS A SOFTWARE ENGINEERING CODE BASE

We maintain and run a student-authored open-source software application named Expertiza,1
whose code base is available on GitHub.2 Expertiza is an online peer-assessment tool initially
funded by NSF. The current Expertiza application was conceived in 2007. Since then, it has
become the main source of course projects in our masters-level Object-Oriented Design and
Development course, and has also been used at 21 other institutions around the world. Over the
years, more than 340 students have contributed code as deliverables through GitHub pull
requests and helped Expertiza undergo several major updates.

3 SOFTWARE ENGINEERING COURSE STRUCTURE

Each semester, students need to finish two OSS-based projects, most of them Expertiza-based
projects (other projects have been based on Mozilla, Sahana, Apache, and OpenMRS, among
others). Ideas for Expertiza-based projects come from 1) code smells as reported by static code
analyzers, 2) insufficient test coverage as detected by third-party tools, 3) runtime exceptions
caught by error monitoring and detection tools, 4) user feedback, 5) new features requested by
users, and 6) unmerged projects from previous semesters. We prepare 20–70 course projects per
semester based on the number of enrolled students. Course projects are done in teams. Teams are
asked to choose which course projects they are interested in, and we run a clustering algorithm
for intelligent team formation3 to assist teams in finding a suitable project. After students finish
course projects, the instructor, as well as other teaching staff review their deliverables. Most of
the time, we finish the review process within one week of the deadline, to provide timely
feedback to students. If students have done a good job, we merge their contributions into the
code repository. If the entire project is not acceptable, we partially merge their contributions.
This means that we merge part of student code directly into the code base and refactor or remove
the remaining part. In the worst situation, we reject student contributions. We usually merge
projects whose score is ≥ 93/100. In the other two situations, the grade will normally be lower
than 93.

4 MAINTAINING STUDENT-AUTHORED OSS PROJECTS

In this section, we discuss what challenges instructors would meet when they attempt to
maintain and run a student-authored software application and what approaches instructors
should use to overcome these challenges. They are closely related and affect each other. If we do
not meet these challenges, the system may have poor usability. We discuss 1) code quality, 2) the
code review and deployment process, 3) infrastructure and 4) human resources these four
perspectives. Figure 1 shows the relationship among these four perspectives. Different
background colors represent different perspectives. Each arrow indicates that the challenge at the
starting point of the arrow may trigger the challenge shown at the end of the arrow. For instance,
if we cannot handle environment upgrades well, some common defects can be introduced into
the system. Then common mistakes can trigger some runtime exceptions in the production
environment. In the end, too many runtime exceptions result in poor system usability. Table 1
summarizes challenges and corresponding approaches in each perspective. We discuss them in
detail below.

4.1 Code Quality

The first challenge instructors face is how to maintain a high-quality code base. If the software

2019 ASEE Southeastern Section Conference

© American Society for Engineering Education, 2019

Table 1. Challenges and Approaches in Each Perspective.

Perspectives Challenges Approaches
Code Quality ● Low pull request merge rate

● Common mistakes
● Environment upgrades

● Plug-and-play setup for OSS environment
● Static code analysis
● Internet bots

● Runtime exceptions ● Error monitoring tool
Code review and
deployment process

● Insufficient test coverage ● More high-quality automated tests
● Avoid manual tests on local machines

● Whether and when to deploy new features ● Canary release
● Blue-green deployment

Infrastructure ● Single point of failure ● A second server
● Regular data backup
● Disaster Recovery Plan (DRP)

Human resources ● Small team
● Student developers
● High mobility

● Attract more Ph.D. or undergraduate students
● More automation

Figure 1. Relationship among Different Perspectives.

application is based primarily on student code developed over many years, it is inevitable that
there are some code quality issues (code smells) in the code base. We discuss the concrete
manifestation of code smells and the problems they cause. We also mention several methods we
have adopted to overcome these challenges.

According to one report, on average 92% of pull requests of industrial projects are merged into
the master code base.4 However, pull requests submitted by students have a low merge rate. We
were only merging around 30% of course projects into the Expertiza code base.5 The report
mentions several possible reasons for pull requests not being merged, including unclear
development directions and late-changing requirements. These causes are not applicable in most
educational settings, because all course projects are designed by teaching staff who should have
a clear idea of what needs to be developed. Most of the time, we will not change project
requirements in mid-stream.

The main reason for the low merge rate is that students do not make high-quality contributions.
In our previous research,5 we manually checked 313 course projects from the past five years and
summarized 13 common mistakes that frequently occur in students' deliverables. The proportion
of the five most frequent mistakes—which include commenting, shallow/no tests, bad naming,
duplicated code, and failing functionality—exceeds 50% in each semester. Hence, we need some
tactics to help students eliminate these common mistakes and make better contributions. Also, a
domino effect may occur if we merge too few contributions: the release of new features may be
delayed, causing the software application to lose users.

We have used Git to manage the Expertiza code base for more than 10 years. During this decade,
the Ruby on Rails community has repeatedly upgraded the web application framework. Due to

Common
mistakes

Insufficient test
coverage

Environment
upgrades

Low pull request
merge rate

Runtime
exceptions

Whether and
when to deploy
new features: a
recurring dilemma

Poor system usability Single point of
failure

Code quality Infrastructure Human resourcesCode review and deployment process

Small team

Student developer

High mobility

2019 ASEE Southeastern Section Conference

© American Society for Engineering Education, 2019

environment upgrades, Expertiza has also undergone several major updates: from Rails 1.0 to
3.0, and from 3.0 to 4.0. There is a certain amount of source code still using the old syntax. Code
with old syntax either works well but with some deprecation warnings, or breaks some features.
These are challenges in maintaining the old code base.

To support students’ participation in OSS-based course projects, we have prepared a plug-and-
play setup for the OSS environment, using virtual machines (VirtualBox) and Docker images.
The idea is that these can provide a self-contained development environment for the projects.
These environments help students to start projects smoothly.

We also make use of static code analysis. With its help, we are able to enforce many coding
guidelines to the code repository. Since 2013, we have used a tool called Code Climate,6 which
is free for OSS projects. The tool can perform static analysis and detect problems such as code
complexity, code duplication, bad code style, and security issues. Although we have set up a
static code analyzer to help check students' contributions, it cannot enforce system-specific
guidelines. Therefore, we implemented three Internet bots during the 2018 fall semester to
bypass the limitations of existing tools. Our pilot study7 results show that 1) more than 70% of
students think the feedback given by the bots is useful; 2) bots can provide six times more
feedback on average than teaching staff; 3) bots can help student contributions avoid more than
33% of system-specific guideline violations.

In the production environment, many runtime exceptions may occur every day. We have used
an error monitoring tool named Airbrake8 since 2011. Its free plan includes a quota of 5000
monthly errors and two-day error retention. Airbrake sends instant alerts (emails) with stack
traces and other information to the OSS core team whenever a runtime exception occurs. We
take advantage of the information provided by Airbrake to eliminate these runtime exceptions.
However, Airbrake’s free plan lacks many advanced features, such as a detailed summary report,
deployment tracking, and third-party tool integration. And it will no longer send alerts once the
number of errors exceeds the monthly quota. Alternatively, we could extend the capabilities of
existing open-source error monitoring tools to add advanced features and handle unlimited
runtime exceptions.

4.2 Code Review and Deployment Process

Our typical code review and deployment pipeline consists of six steps as shown in Figure 2: 1)
creating/modifying a pull request; 2) automatically executing static code analysis and automated
tests after each code commit; 3) performing manual testing; 4) optionally discussing the code in
the weekly meeting of the OSS core team; 5) deploying the code. If we find problems during
steps 2–4, we will ask the author to modify the code and go through these steps again (shown by
the dotted line). Then we deploy the code to the production environment. If some runtime
exceptions occur because of our newly-deployed code, we can 6) roll back to the previous
release.

Our current code review and deployment pipeline relies heavily on continuous integration,
manual testing, and continuous deployment. The biggest problem with continuous integration is
insufficient test coverage. The biggest problem with manual testing is that most of the time we
test new features on local machines. And the biggest problem with continuous deployment is that
we need a mechanism to decide whether and when to deploy new features.

2019 ASEE Southeastern Section Conference

© American Society for Engineering Education, 2019

Figure 2. Code Review and Deployment Pipeline.

Expertiza has insufficient test coverage, only around 50%, which means the automated tests in
Expertiza lacks thoroughness. Moreover, many existing tests are shallow tests—tests focusing on
irrelevant, unlikely-to-fail conditions,5 which weakens their fault-finding capability. Before
merging each project, we make sure that all existing tests pass and perform additional manual
tests. But these may not cover all edge cases, even fatal errors.

More high-quality automated tests are crucial to the quality control of the code base. We have
used a tool called Coveralls9 since 2014. It can visualize statement coverage statistics in different
granularities, from repository overview coverage, individual file coverage to line-by-line
coverage. Each time developers modify the code base, Coveralls calculates the new test coverage
and sends a notification to those developers.

Furthermore, we should avoid manual tests on local machines to eliminate the “it works on my
machine” problem. Every machine has different environment settings. If a new feature works on
one developer's local machine, there is no guarantee that the new feature also works in the
production environment. The solution is to use on-demand test servers. Before manual testing,
we use Ansible,10 a configuration-management tool, to spin up a test server with the same
settings as the production environment and pull a specific version of the code base from the
version-control system. Then multiple developers can log into the system and conduct manual
testing together. During manual testing, we always conduct smoke testing first to make sure new
contributions do not break the most important and most basic features of the system.

As the core team of Expertiza, we need to decide whether to deploy new features, which is a
recurring dilemma. Suppose we have a new feature which is urgently required but not thoroughly
tested. If we deploy the new feature, some runtime exceptions may occur. On the other hand, if
we do not deploy the new feature, users will not benefit from it. Another example is whether we
need to deploy a usable feature with dirty code. If we deploy the feature, users will benefit in the
short term. Later we can ask another team to refactor the code. On the other hand, not deploying
the new feature allows us to avoid code smells and the technical debt caused by the dirty code.
More importantly, we also need to decide when to deploy new features. If we deploy new
features immediately after we confirm the modifications, the change may come while the system
is heavily used. If we have overlooked some edge cases, users may encounter bugs.
Alternatively, we can deploy new features only when the system is not heavily used, such as late
nights or early mornings. However, this requires developers to work late at night or get up early
in the morning.

Since 2011, we have used a tool named Capistrano11 to handle continuous deployment. However,
the tool cannot help us to decide whether and when to deploy new features. One technique called
canary release can help us to decide whether to deploy a new feature. Canary release can reduce
the risk of introducing new features into the production environment by first rolling out the

2019 ASEE Southeastern Section Conference

© American Society for Engineering Education, 2019

feature to the core team, then to a small set of users, and finally to the entire user group. If
developers need to address any issues during this process, the new feature will be unavailable to
the next subset of users. We can deploy new features frequently by introducing the blue-green
deployment. It uses two environments (blue and green). At any time, only one environment is
live (e.g., blue). Then we can deploy new features to the other environment (green). After the
green environment is stable, we can switch all incoming traffic to the green environment and the
blue one becomes idle.12 If developers encounter some runtime errors in the green environment,
they can easily switch back to the blue environment.

4.3 Infrastructure

Currently, we have deployed Expertiza on a server that physically located in our university. The
single server becomes a single point of failure. Users cannot access Expertiza whenever the
server is down or scheduled for maintenance. To eliminate the single point of failure, we have
already configured a second server to achieve higher site reliability. And we created a load
balancer to control traffic between two servers. Furthermore, we have set up regular data
backup to avoid the data loss and plan to document a Disaster Recovery Plan (DRP) to protect
the entire infrastructure in the disaster.

4.4 Human Resources

Expertiza core team is a small team. Last year, the core team of Expertiza had four members.
Two core team members left recently because of graduation and lack of continuing funding. One
student joined the team. Currently, there are three members in Expertiza core team. In the event
of an emergency, at least one of us has to take the action to resolve the problem. Most core team
members are student developers. Although most of us have taken related courses and had
several internship experiences, our experience is still limited compared with practitioners in
industry. Furthermore, as students, we have to take other courses. Hence, we are unable to
maintain Expertiza full time. Besides the core team of Expertiza, we have several masters
students who help us refactor code and fix bugs, which is quite helpful. However, masters
students have high mobility— most masters students stay on the team only a semester or two. It
might be more effective to attract more Ph.D. or undergraduate students to the team since they
are able to stay longer than masters students. We can always introduce more automation to
make up for the lack of human resources. We have already implemented automatic static code
analysis, automated testing framework, and automated test coverage calculation to ensure the
quality of student contributions.

5 CONCLUSIONS

We have shared our 10+-year experience on how to maintain student-authored open-source
software with limited resources, and how to organically make an OSS project as the code base of
a software engineering course. We have also discussed what challenges instructors would face
when attempting to maintain and run a software application implemented by students, from four
perspectives: 1) code quality, 2) code review and deployment process, 3) infrastructure and 4)
human resources. Finally, we discuss what approaches instructors could use to overcome these
challenges for each perspective.

2019 ASEE Southeastern Section Conference

© American Society for Engineering Education, 2019

References

1 E. Gehringer, L. Ehresman, S. G. Conger and P. Wagle, "Reusable learning objects through peer review:

The Expertiza approach," Innovate: Journal of Online Education, Vols. 3, no. 5, p. 4, 2007.
2 Expertiza. Available: https://github.com/expertiza/expertiza.
3 S. Akbar, E. Gehringer and Z. Hu, "Improving formation of student teams: a clustering approach," in

Proceedings of the 40th International Conference on Software Engineering: Companion Proceedings, 2018.
4 "8% of pull requests are doomed,". Available: https://codeclimate.com/blog/abandoned-pull-requests/.
5 Z. Hu, Y. Song and E. Gehringer, "Open-source software in class: students' common mistakes," in

Proceedings of the 40th International Conference on Software Engineering: Software Engineering
Education and Training, 2018.

6 "Code Climate,". Available: https://codeclimate.com/github/expertiza/expertiza.
7 Z. Hu and E. Gehringer, "Use Bots to Improve GitHub Pull-Request Feedback," To appear in Proceedings

of the 50th ACM Technical Symposium on Computer Science Education, 2019.
8 "Airbrake,". Available: https://airbrake.io/.
9 "Coveralls,". Available: https://coveralls.io/github/expertiza/expertiza?branch=master.
10 Ansible. Available: https://www.ansible.com/.
11 Capistrano. Available: https://capistranorb.com/.
12 M. Fowler, "BlueGreenDeployment,". Available:

https://martinfowler.com/bliki/BlueGreenDeployment.html.

Zhewei Hu

Zhewei Hu is a Ph.D. candidate in the Department of Computer Science, North Carolina State
University. Zhewei’s research interests include computer science education and software
engineering.

Edward F. Gehringer

Dr. Edward Gehringer is a Professor in the Department of Computer Science, North Carolina
State University. Dr. Gehringer leads the Expertiza project, which is supported by the National
Science Foundation. His research focuses on computer-supported education, educational
technology, computer architecture, natural-language processing, and ethics in computing.

Yang Song

Dr. Yang Song is an Assistant Professor in the Department of Computer Science, University of
North Carolina Wilmington. Dr. Song received his Ph.D. degree from NC State University. His
research focuses on machine learning, data mining, data science and their applications on higher
education.

