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Abstract 

For most chemical engineering students their first jobs in industry will be as Process Engineers.  
A Process Engineer is assigned a process where operating conditions are established, and 
responsibility is to run the process day and night at those values.  In short, their job is Process 
Control.  So what tools are they given to do this job from their undergraduate curriculum?  For 
many, it will be learning Linear Classic Control Theory with a focus on Single Input Single Output 
(SISO) processes which leaves them woefully unprepared to deal with nonlinear industrial plants 
that have Multiple Inputs and Multiple Outputs (MIMO). Instead, the authors detail a curriculum 
that quickly goes from Classic Control Theory to Internal Model Control (IMC) Based- PID 
Tuning of nonlinear processes.  All exams are regulating nonlinear systems with load disturbances 
and noise culminating in 2 x 2 processes with pairings determined by Relative Gain Arrays and 
inclusion of static feedforward decoupling of loop interactions.  Problem sets and Matlab code 
available on authors’ website[1]. 
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Introduction 

Edgar et al, 2006[2] cites various chemical engineering education symposiums where faculty have 
strongly considered removal of process control from the curriculum, that it is a mature field, that 
it is unlikely to have much future impact on discovery of new technology. And yet every Process 
Engineer’s main job is to regulate a process at a desired set of operating conditions 24 hours a day 
for seven days a week. So how do these views come about in academia? Control is an entity th 

at is involved in almost all engineering fields yet stands apart from them. Faculty do not feel 
comfortable teaching control. They have all taken the course as undergraduates, but few would 
teach it themselves. This comes about in large part on how control is taught. It has become too 
esoteric with its own vernacular, and its over dependence on Laplace Domain mathematics, and it 
is too often removed from real world nonlinear systems due to over dependence on Transfer 
Functions that are not used in any other engineering classes.  Several papers are out there over the 
past 15 years talking about need to revolutionize control education and yet it has not happened to 
any large extent[2][3][4][5][6].  Most textbooks are still based almost solely on Linear Control Theory, 
transfer functions, and traditional tuning techniques for Proportional Integral Derivative (PID) 
controller. Internal Model Control based PID tuning is still absent in majority of textbooks even 
though it is easiest and safest method to tune a PID controller, and brings the student closer to 
handling advanced controllers such as Model Predictive Control which are becoming more 
prevalent in all chemical process industries. Haugen and Wolden, 2013[3] provided a course outline 
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for process control that include in part the following: leaving out Laplace Transforms and Transfer 
Functions, real time simulations, measurement noise included, experimental control, and 
feedforward control with nonlinear models[3]. Focus should be on practice before theory[3]. Yet 
even here Haugen and Wolden, 2013[3] put too much emphasis on SISO systems nor on the 
importance of teaching IMC based PID tuning, and too much reliance on frequency response 
analysis that is hardly used in industry, and has little basis for slower dynamics and hard to perturb 
sinusoidally chemical processes. Our proposition: less emphasis on Transfer Functions and linear 
SISO systems. Authors proposed preparation for students: nonlinear system behavior importance 
of operating regions, what is PID tuning how best do it using model based technique, concept of 
direct synthesis/model based control, methodology to get simple model fit and how to handle 
MIMO system, and inclusion of load disturbances and noise. Overall trying to mimic what they 
will see in the chemical process industry. 

Background Theory 

NL SISO Example: Van de Vusse Reaction Input Multiplicity and Inverse Response 
The Van de Vusse reaction system consists of two reactions of A taking place in parallel (see eqn 
1). The reactions are run in a continuous stirred tank reactor with constant volume, density, and 
temperature.  The product that is desired is the concentration of B, Cb (moles B/L).  This system 
exhibits as challenging of a control problem as one can expect for a single input and single output 
process.  The reactions that occur are: 
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Complete modeling equations and control examples are in Aufderheide and Bequette, 2003[7]. 
The steady state plots for different feed concentrations are shown in fig. 1. The control 
objective is to operate as closely as 
possible to the optimum point to 
maximize the concentration of B. 
Operating points on the left side of the 
optimum are non-minimum phase. As the 
dilution rate is increased the right-half-
plane zero moves to the left-half plane 
and the gain becomes negative. The gain 
at the optimum is zero. Control is very 
difficult since the desired operating point 
has a gain of zero and the dynamics on 
either side are very different. While the 
right hand side of the optimum can be 
controlled in almost a deadbeat fashion in 
a single sample time, the left hand side 
has a significant inverse response that 
requires the controller to not only change 
gain signs but be detuned significantly as 

 

Fig.1. Steady state curves for different feed 
concentrations of Cain and for both sets of kinetic 
parameters[7]. Arrow (     ) indicating optimum. 
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well. Sample step responses for the nominal case (1st set of kinetic parameters in Fig. 1) are shown 
in Fig. 2 after subtracting the initial Cb concentration to more readily compare them. 

Note that the top two step responses are at steady states to the left of the optimal value so have 
inverse responses and positive gains.  As the steady state dilution rate approaches the optimal value 
the gains approach zero and the inverse responses get longer.  Uss=0.67 min-1 has approximately 
four times the process gain and two-thirds the inverse response time.  However to the right of the 
optimal steady state dilution the process no longer has an inverse response and has negative gain. 

For control, it is going to be difficult to regulate the process when on the left side of the optimal 
steady state value due to the significant inverse response times.  If a standard fixed controller such 
as Proportional Integral Derivative (PID) Controller is used then it would be necessary to detune 
it considerably so that the controller does not attempt to operate aggressively while the system is 
in an inverse response.  The reason for this is simple, the controller will assume that the process is 
going in the wrong direction and will apply a manipulation in the dilution rate opposite of what it 
should be. If tuning is aggressive can have the input increase such that now on the right side of the 
optimum where the process gain is now negative causing the fixed linear PID controller to fail. 
Therefor any attempt to use a single PID controller to regulate this system near the optimum value 
has a chance to fail miserably since any disturbance or a slight overshoot by the controller will 
bring the process to the other side of the optimum where the process gain has a change in sign. 

Control at the optimal point is impossible. 
Recall that an effective controller gain is 
always proportional to the inverse of the 
process gain.  The process gain at the optimal 
point in this system is zero.  Therefor for the 
controller gain to keep the system exactly at 
the optimal point (without falling off slightly 
to either side) would have to be infinite.   
Other interesting point, yes it will take a lot 
of control effort to get near the optimum 
value since the process gain is approaching 
zero.  However, once you are in the vicinity 
of the optimum point one can practically turn 
the controller off and as long as no 
disturbances occur the output will stay near 
the optimum value since the process gains 
near the optimum are very small so the 
system will not move that far away from the 
optimum on its own accord. Students run a series of exercises on the Van de Vusse reactor handling 
disturbances in feed concentration, input and output noise, and with changes in kinetic parameters 
to mimic catalyst poisoning.  

MIMO Control with RGA and Static Feedforward Decoupling 
It is critical for students’ preparation to enter industry to have knowledge and strategy for handling 
systems with multiple inputs and outputs.  Here we have done a variation of the case studies done 
by Bequette etal, 1998[4] which are projects done by students to design Multivariable-SISO 

 

Fig.2. Sample step responses for the nominal case 
starting at steady state dilution rates, Uss[7] 
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controllers regulating etcher, lime kiln, cardiac patient, etc[4].  Bequette’s projects involve 2 by 2 
systems with an added disturbance input[4]. Processes are linear transfer functions with transport 
delays and input constraints as only nonlinearities.  We have developed nonlinear processes that 
the students complete in a 2-3 hour exam period where like in Bequette’s students use Relative 
Gain Array to determine input-output pairings and specific tuning rules depending if the process 
is decoupled, “amping”, where relative gain is fractional due to control loops assisting in 
increasing the output, and “crunching” where relative gain is greater than one due to control loops 
restraining the output[8]. From step responses, students again fit FOPDT models and design 
individual controllers one at a time using tuning rules for their RGA results.  Then both loops are 
closed and any tweaks in tuning are made.  Lastly, students do static decoupling to help eliminate 
interactions between the two control loops[9].  Disturbance rejection simulations are tested 
including both input/output noise and various load disturbances.   

Results 

A SISO Example: pH Waste Tank 
Waste water being discharged into any medium of water must first be neutralized to ensure that 
aquatic life is not destroyed. An acceptable range for waste water disposal is pH 6 to 8. pH control 
of waste water is difficult, this is due to the non-linearity of the process around the neutralization 
point and the frequent changes in the flowrate and composition of the streams. The system has  

  

Fig.3. Large set point change where final pH is 6 Fig.4. Disturbance in the feed flow rate 

Top (output): Actual          , Set point                Bottom(input): Actual           , Calculated by PID 

waste water from four processes being distributed to a tank where neutralization of these streams 
will be achieved. Nitric Acid and Caustic Soda are the neutralizing agents that will be used to 
attain an acceptable pH. The complete modeling equations are in Wilkes, etal 2012[10]. The FOPDT 
approximations and tuning parameters were calculated based on a step response of the pH. Figure 
3 shows with a large set point change to a pH of 6, the system is unstable and the valve is slamming 
full open to fully closed. The problem here is that the step response and its resulting FOPDT is 
only accurate near the operating condition of pH= 10.5. Clearly the resulting controller is too 
aggressive in this new set of operating conditions that the system is being driven towards. The 
disturbance in the feed flow rate as seen in Figure 4, causes the system to be physically 
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unrealizable. There is no way that the 
controller can achieve the desired setpoint. 
Figure 5 shows the pH staying within the 
acceptable pH band. Initially the process is 
outside of the band, fluid builds up in the tank 
and the controller tuning which was set for 
continuous flowing system is not aggressive 
enough to change the pH quickly. This all 
changes when at roughly 12 hours after the set 
point change the pH is within the acceptable 
band and the flow out is no longer zero. A 
great deal of caustic has been added to the 
system to manipulate the pH and the non-ideal 
mixing drives the pH too high above the set 
point, at which point the caustic flow goes to 
zero. The controller has done fine since the pH is within adequate environmental constraints for 
the vast majority of the run. This system illustrates the need for nonlinear dynamic models for 
regulation. A transfer function with a transport delay and input constraints would not provide 
instability in Figure 4, and the importance of what is an operating region. Nor could a band where 
process switched from fed batch to continuous be done with a linear transfer function. 

MIMO Example: Regulating a Homopolymerization Reactor  
The process being regulated is a methylmethacrylate free radical homopolymerization reaction in 
a continuous stirred tank reactor.  The model and baseline conditions are modified from Choi 
(1986)[11].  The system can be very complex having very different steady state conditions, stability 
nodes, cycles, and bifurcations depending on the parameterization and operating conditions of the  

  

Fig.6. Best IMC based PI tuning with both                    Fig.7. Feed forward static decoupling with 
loops closed                                                                            both loops closed 

Top (output): Actual          , Set point                Bottom(input): Actual           , Calculated by PID 

non-isothermal reactor. This example has been simplified here for a two controlled outputs, 
monomer concentration, M, and initiator concentration, I, by two inputs volumetric feed rate, q, 
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Fig.5. pH stays with 6 – 8 band prior to tank being 
emptied; Actual         , Set point            , Band,  
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and initiator feed concentration, If, the system was modified to be isothermal with the reactor 
temperature, T, to be treated as one of the disturbance inputs. The other disturbance input is the 
monomer feed concentration, Mf.  Students were required to perturb the reactor, obtain process 
gains for each input/output combination, do a Relative Gain Analysis (RGA) to determine 
input/output pairs, calculate First Order Plus Dead Time models for the control loops, tune each 
loop separately, and then detune (if necessary) when both loops are closed.  The results of the RGA 
were paired q vs M and If vs I.  The system is “amping” and when both loops are closed will be 
destabilizing with faster performance and lower robustness.  The magnitude of the interaction, is 
moderately high.  Each individual control loop should be tuned somewhat overdamped with the 
foresight that when both are closed they will become less stable.  After closing both loops may 
need to tweak further.  Due to interaction level decoupling should help controller performance 
when all loops closed. Overall as seen in Fig. 6, this is very good control for an “amping” system.  
There is an increase in performance accompanied by a decrease in robustness in regulation of I 
which was expected.  The resulting overshoot for I is roughly 15% which is fine and the controlled 
response has I’s setpoint being reached in 7 hours with a total settling time of 60 hours which is 
not that good.  So response is slightly to somewhat underdamped.  However, the regulation of M 
is surprisingly not more underdamped but actually a little more overdamped now needing 55 hours 
to reach setpoint where before it was 40 hours. So the underdamped expectation from the RGA 
was seen really in I only. The purpose of static decoupling is to minimize interactions between 
control loops.  Fig. 7 shows it works almost perfectly with both loops slightly overdamped.  
Control is excellent and settling time for M is slightly less to 38 hours instead of 40 hours without 
the decoupling. Similar results are seen for I with a settling time of about 30 hours which is ten 
hours less than before.   

Discussion and Conclusions 

Teaching process control is not an easy subject, and is absolutely critical for all Process Engineers 
to be successful in industry.  Too often it is coupled with learning Matlab, or takes on additional 
burden of being only class that covers any process dynamics.  These add to the difficulty in 
covering the large wealth of material in control that comes from Chemical, Electrical, and 
Mechanical engineering fields.  In addition, control has its own lexicon, notation, and terminology 
which can be difficult for students to grasp.  Without proper care by the Instructor it can quickly 
become very esoteric and seem devoid of the reality that many of the students will be in front of 
large machinery with several inputs and outputs that is highly nonlinear in nature and now have to 
regulate the process so it runs 24 hours a day, seven days a week.  It is very daunting without a 
proper strategy and training to handle the situation adequately. No control class can handle all the 
topics in the field be it frequency responses, root-locus design, cascade control, anti-reset windup, 
gain scheduling, split ratio control, inferential control, model based control such as model 
predictive control, etc.  Many worthwhile areas to teach the students must be put aside. We have 
presented here a curriculum that given those time constraints covers the skills absolutely needed 
to be successful in industry with the proper background and theory so students understand how 
they work.  Many examples of tests for both SISO and MIMO processes in various engineering 
fields are available for download at authors’ web site.  All necessary Matlab files are provided 
with the scripts. Assessment examples for cascade control, gain scheduling, and MPC also are 
present for download. 
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