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Abstract 

Evaluation of cognitive functioning via physiological measures is a growing area of 
research in Engineering Education due to its potential implications for enhancing student 
performance. This paper focuses on the measurement of cognitive functioning via 
electroencephalography (EEG) and self-report measures, and their relationship with 
performance. Researchers evaluated the B-Alert X10 EEG system’s reliability in measuring 
cognitive load, and thus indirectly evaluated its potential to measure both cognitive flexibility 
and cognitive efficiency in future research. Sophomore and senior undergraduate engineering 
students solved five engineering problems of increasing complexity while connected to the EEG. 
As a secondary measure, participants also completed the NASA Task Load Index, a 
multidimensional self-report assessment tool. The average cognitive load experienced by all 
participants increased as they attempted to solve problems of increasing difficulty, and 
sophomores experienced greater cognitive load than seniors. These findings further support 
electroencephalography as a valid measure of cognitive load. 
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Introduction 

The brain is one of the most important, and most studied, organs in the human body. It is capable 
of quickly processing information, making decisions to aid in survival, and controls a large 
portion of the biological systems required for survival. The human brain constantly evaluates an 
individual’s surroundings, looking towards the future and generalizing about our environment. It 
develops strategies to enhance our opportunities and minimize dangerous encounters1.  

In addition to maintaining biological homeostasis, the brain also spends a great deal of time 
performing problem solving. Problem-solving engages a learner with a wide variety of cognitive 
components, including but not limited to concepts, rules, information networking, memory, and 
knowledge assessment2. This wide range of cognitive components can be attributed to the large 
variation among problem types. To show a comparison across the several types of problems, 
Jonassen collected hundreds of problems, analyzed their various attributes, and categorized them 
into 11 main groups: logical, algorithmic, story, rule-using, decision making, troubleshooting, 
diagnosis solution, strategic performance, case analysis, design, and dilemma3. These problem 
types vary in degrees of structuredness and complexity. Well-structured problems present all 
elements of the problem to the solver and have solutions that are both distinct and 
comprehensible, where the relationship between decision choices and problem states is known4. 
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Ill-structured problems possess elements that are unknown, contain a variety of solutions 
(including no solution at all), and have multiple criteria for evaluating solutions5. Complexity on 
the other hand, while slightly overlapping with structuredness, has a different meaning. The 
complexity of a problem is defined by the number of issues, functions, or variables that are 
needed to solve a problem. Complexity is also impacted by the degree of connectivity among 
these properties, as well as their stability over time6. The degree to how well or ill structured a 
problem is, as well as it’s degree of complexity, impacts how an individual solves the problem, 
as well as how difficult the individual perceives the problem to be. 

Individuals vary in their cognitive styles and controls, which represents patterns of thinking that 
control the ways that individuals process and reason about information7. Therefore, a problem 
that may be difficult to solve for one individual may be considered easy to another. Nevertheless, 
problem solving is a very complex process, which is why it is a highly valued skill, and has a 
strong emphasis in the fields of mathematics, science, and engineering8. Ultimately, we are 
studying three measures of cognitive load, cognitive flexibility, and cognitive efficiency. 
Cognitive load is the amount of mental effort exerted by the working memory at a given time8. 
Cognitive flexibility is the ability to mentally switch between different concepts and thus to think 
about multiple concepts simultaneously. Cognitive efficiency is an individual’s ability to use his 
or her mental resources to solve problems. The study in this paper focuses specifically on 
cognitive load.  

Cognitive Load Theory and Measurement 

Educational research literature is increasingly using cognitive load theory to understand how 
individuals learn, and to seek ways to create more effective learning styles. Cognitive load theory 
(CLT) is concerned with techniques for using working memory in ways that facilitate the 
changes in long term memory associated with schema construction and automation9.  CLT is 
based on the established psychological principles of a long-term memory with a virtually 
unlimited capacity for storing information, and of a working memory with a limited capacity in 
processing information10. CLT research directly contributes to the design of instructional 
methods that effectively maximize the use of our limited cognitive processing capacity in 
acquiring knowledge and applying skills10.    

The load that performing a specific task imposes on the learner’s cognitive system can be 
represented by a multidimensional construct referred to as cognitive load12. Cognitive load 
includes the concepts of mental load, mental effort, and performance13.  Mental effort, compared 
to mental load and performance measures, is considered more directly related to cognitive load11.  
It is measured while participants are working on a task; and is the feature of cognitive load that 
refers to the cognitive capacity that is allocated to accommodate the demands imposed by the 
tasks being performed10. Mental load is task-related, and it serves as an indicator of the cognitive 
capacity needed to process the complexity of a task. Using an electroencephalogram (EEG), 
cognitive load can be measured based on the ratio of theta waves to alpha waves. A greater ratio 
is indicative of a higher cognitive load. 

The research team chose to use the B-Alert X10 EEG for several reasons. The B-Alert X10 is a 
9-sensor EEG that provides the option of recording electrocardiographic (ECG) data, or more 
plainly put, it can monitor participants’ heartrates. The device is low-cost, portable, and wireless 
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device. The B-Alert X10 also interacts with the B-Alert Live software suite, which utilizes 
thoroughly validated algorithms to measure and record cognitive load in real time14. This 
algorithm uses a linear discriminate function (LDF) to generate a value between 0 and 1, 
representing the likelihood that the individual is experiencing cognitive load at a specific 1-
second epoch. This variable typically has a low range (usually between .6 and .8), but it usually 
has a low variance as well, granting it statistical power. In previous research, researchers have 
analyzed this LDF-based variable through visual analysis and comparison, as well as through 
statistical significance testing15.  

As a secondary measure of cognitive load, researchers employed the NASA-TLX (Task Load 
Index) self-report assessment tool. The NASA-TLX is a multidimensional assessment tool that 
was developed by NASA in the late 1980s for gathering information about the magnitude and 
sources of workload related factors16. The NASA-TLX carefully and specifically defines six 
dimensions of workload: mental demand, physical demand, temporal demand, performance, 
effort, and frustration. The researchers chose the NASA-TLX over other self-report measures as 
it was well-established due to its age, commonly cited as a valid metric, and due to the tool’s 
growing prominence as a secondary measure during EEG studies17. This measure not only 
provided a secondary measure of cognitive load to compare to the team’s EEG results, but also 
allowed the project greater confidence in the gradual rise in difficulty of its procedure’s 
problems.  

Developing the Problem Set 

Five problems were selected to serve as the problem set the participants would solve. The first 
problem selected was an algorithmic problem, designed to be very structured and low in 
complexity. The second problem selected was a rule using problem, designed to be moderately 
structured but still low in complexity. The third problem selected was a story (word) problem, 
designed to be slightly less structured than the previous problem with the same level of 
complexity. The fourth problem selected was a more complex rule-using problem, in which the 
participant had to use concepts that were covered in both problem two and problem three. This 
problem was designed to be less structured than the others while also being moderately complex. 
The fifth problem selected was a troubleshooting problem, designed to be the most complicated 
and least structured of all the problems. Each of these problems were selected so that they would 
progressively increase in complexity and decrease in structuredness. The goal of this selection 
was to increase the cognitive load experienced while solving each problem. For more 
information about these five problems, please see the appendix.  

The B-Alert Live System 

The B-Alert X10® collects data from nine EEG sensor sites (Fz, F3, F4, Cz, C3, C4, POz, P3 
and P4), two reference electrodes, and two electrocardiogram (ECG) lead sites. The device 
interacts with a data analysis software package from Advanced Brain Monitoring (ABM) called 
B-Alert Live®. This software package allows the researcher to easily analyze data via ABM’s 
algorithms for assessing cognitive state metrics (which assesses engagement level) and cognitive 
workload metrics (which assess a participant’s mental effort). The software package also allows 
the researcher to monitor distraction via an algorithm derived from the cognitive state metrics, 
and it monitors heart rate via ECG. 
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B-Alert Live systems feature automatic signal decontamination measures, including measures for 
electromyography (EMG), electrooculography (EOG), spikes, saturations, and excursions. The 
software measures engagement via a four-class quadratic DFA derived for each participant 
during the metric benchmarking task. This four-class model is constructed using absolute and 
relative power spectra variables from Fz-POz and Cz-POz. The EEG measure of mental 
workload was established via data from C3-C4, Cz-PO, F3-Cz, Fz-C3, and Fz-PO18. These 
measures have been previously validated in military, industrial, and educational research19. 

Participants  

Participants were undergraduate engineering students at James Madison University (N = 9). All 
participants were either sophomores (n = 4) or seniors (n = 5), and all were male except for a 
single female sophomore. Participants received an $11 school dining voucher upon completion 
of the study as incentive.  

EEG Sessions 

Participants were primarily communicated to via a script/protocol, which was written to 
standardize the experience between participants as much as possible. Researchers gave the 
participants specific points during the study in which participants could ask questions about the 
study. After competing an informed consent document, all participants were fitted with the B-
Alert X10 system and the device’s connection was tested for impedance per instructions from the 
device’s manufacturer. Participants then completed metric benchmarking tasks to create a 
baseline for B-Alert’s algorithm to utilize. This algorithm allows B-Alert Live to compare each 
individual subject’s baseline EEG activity to that same subject’s EEG activity under load.  

After participants completed the metric benchmarking tasks, a research team member provided 
participants a paper list of descriptions of all dimensions the NASA-TLX assessed, and data 
acquisition began. During data acquisition, participants completed five physics problems of 
increasing difficulty. Participants were offered 1-minute breaks between questions. After 
participants completed a problem, researchers provided participants with a NASA-TLX report 
sheet a scale for each of the six measured dimensions. At the end of data acquisition, participants 
completed a final NASA-TLX task that compared each of the six dimensions to the other five, as 
instructed in the NASA-TLX manual16. A participant’s time commitment for completing the 
entire procedure ranged from 45 minutes to 90 minutes. 

Results 

When collecting the data, each participant was identified by a four-digit system. The first digit is 
a representation of the student’s gender (0=male 1=female). The second digit is a representation 
of the student’s grade level (0=sophomore 1=senior). The last two digits are a representation of 
the participant number (ex. 01). Before the data could be analyzed, it first had to be cleaned. This 
process began by selecting the data points that were collected while the participant was solving a 
problem. This was done by using the recorded start and stop times noted above. After the data 
associated with each problem was identified, the data was then scanned for invalid epochs. These 
epochs occur when more than 128 (out of a possible 256) values are deemed corrupted by the 
software, and thus the software labels that one second epoch as corrupted. These errors are 
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identified as values of -99999 and are to be excluded from analysis according to B-Alert’s User 
Manual. 

Data Analysis

The researchers wanted to create a problem set that 
increased in difficulty from problem to problem. 
Table 1 shows the percentage of participants across 
each of the five problems that answered the problem 
correctly. This table shows that, generally, the 
problems increased in difficulty as the experiment 
progressed.  

Table 1 Correct Responses Across Five 
Problems 

Problem 
Correct 

Responses 
Percent 
Correct 

1 9 100% 
2 7 63% 
3 7 63% 
4 4 44% 
5 4 44% 

Researchers focused on averages of B-Alert Live’s cognitive load metric, overall correctness 
score on the problems, and NASA-TLX self-report data. Average load can be defined as the 
mean intensity of load during the performance of a single task (in this experiment, a single 
question). This was calculated by averaging B-Alert Live’s cognitive load variable across the 
duration of a problem. Overall correctness was scored based on a total of 15 potential points 
throughout all five problems. NASA-TLX score was calculated by multiplying the weight of a 
dimension against its raw score. This new adjusted score for each dimension was then summed 
and divided by 15, creating an overall workload score ranging from 1 to 10. This workload score 

was then averaged 
across all five 
problems for each 
participant, giving 
the researchers an 
overall index of 
load for the 
experiment. 

A consistent, 
gradual increase in 
average load 
throughout the five 
problems was 
observed visually, 
as seen in Figure 1. 
This figure 
demonstrates the 
average cognitive 

load that was experienced for each problem, and comparing sophomore averages against seniors. 
As hypothesized, sophomores experienced a noticeably larger amount of cognitive load than 
seniors did, with this difference increasing as the problems increased in difficulty. 
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Researchers then compared overall average load against the correctness scores of each 
participant. This did not reveal any visible relationship or any kind. The researchers then 
compared NASA-TLX overall load to each participant’s score, which also showed little 
relationship. 

Though correctness did not seem to have an impact on either an individual’s cognitive load, as 
measured by the EEG, or via their own reporting via the NASA-TLX, there was a noticeable 
difference between sophomore and senior participants in self-reported overall workload. As 
demonstrated in Figure 2, seniors perceived that they were working harder than sophomores 
perceived themselves working, despite EEG evidence to the contrary. 

With this small of a 
sample size (N = 9), 
we did not run 
inferential statistics on 
this data. However, 
inferential statistics are 
appropriate tools to use 
with both NASA-TLX 
results and B-Alert 
Live’s cognitive load 
metric. Despite the 
lack of statistical 
analyses, there is a 
visible difference in 
self-reported workload 
between sophomore 
and senior participants. 

 

Discussion 

The researchers began this project with the goal of creating problems that scaled upward in 
difficulty based on Jonassen’s hierarchy2. Based on the results demonstrated in Table 2, the 
researchers feel confident that the problems increased in difficulty as the experiment progressed, 
since correctness scores, on average, decreased as participants progressed through the procedure. 
Researchers predicted that sophomore students would have to work harder, and thus exhibit more 
cognitive load, than senior students to solve the same problems. Figure 1 supports this hypothesis 
as measured through EEG data.  

The research team implemented the NASA-TLX as a measure of self-reported workload to have 
a secondary measure of problem difficulty, and to see if there was a difference between how hard 
individuals thought that they worked and how hard individuals worked (as measured by the 
EEG). This led the research team into some surprising findings as senior participants reported 
that they were working harder on each task than sophomores, however they were experiencing 
less cognitive load than sophomores. The researchers are not sure why this difference in 
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perceived, or self-reported, workload exists. It may be attributed to senior students nearing their 
graduation dates, but regardless the results are interesting. The difference in perceived workload 
does not strongly contradict the researchers’ originally hypotheses, given the other results of this 
study, but it does raise some interesting questions about motivation. 

Future Work 

The research team is currently evaluating differences in cognitive load measured through both 
EEG and self-report measures between linear and systems thinking. The researchers are doing 
this by having senior undergraduate engineering students complete two tasks related to a specific 
problem in the field of engineering. These two tasks are either the construction of a concept map 
related to the specified problem or the listing of as many related concepts to the task as possible. 
The listing of terms/concepts related to the problem is a linear thinking task, and concept maps 
involve systems thinking. The current experiment being conducted in our lab can be directly 
attributed to the success of the study presented in this paper. The validation of both the NASA-
TLX and B-Alert’s EEG quantification of cognitive load in our specific use case is essential to 
our current study. Our overarching goal is to find ways to create teaching methods that naturally 
promote the efficient management of cognitive resources, to train more effective engineers 
within the sustainable design paradigm. The results of the study detailed in this paper, and the 
experience that the research team gained during this study, provide the foundation that our 
current research is built upon.  
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Appendix 

 1. Examine the figure below.  If there is a upward force of 1200N applied to an object, at the 
same time a downward force of 800N is applied to the object, determine the magnitude and direction of 
the net force that is applied on the object.  

2.  Using the triangle [above], solve for the angle θ.  

3. A gymnast has a mass of 55kg and is hanging vertically from a pair of 
parallel rings (as shown below).  If the ropes supporting the gymnast are 
completely vertical and attached to the ceiling above, what is the tension force 
in each of the ropes?  

 

 

4. If the same ropes mentioned in the problem above are connected to the ceiling, where 
θ=45°, what is the tension force in each rope?  

 

 

 

5. For the pulley system shown below, if the mass of block m is equal to 10kg, what force must be applied at the 
end of rope 1 to keep the system in static equilibrium?  

 

 

 

 


