Developing Modeling Software for Engineering Majors with Emphasis on Water Resources.

Samuel Camacaro¹, David Rivas², Jairo Diaz-Ramirez³

4 **Abstract** -Currently, modeling tools with graphical user interfaces are beneficial for teaching engineering. In

teaching water-related courses, the complexity of rainfall-runoff theory can be softened by using computer models.

6 In rainfall-runoff analyses, calculating soil infiltration rates is key to computing how much water enters the soil

7 column and how much water flows over the ground surface as runoff in a finite lapse of time. The goal of this

8 project was to develop a stand-alone graphical user interface tool where users can select different soil infiltration

9 equations using the MATLAB programming language. The infiltration analysis tool is called WATIC and consists

10 of over 20 formulas divided into three groups: empirical, conceptual, and other models. The WATIC software will

11 support engineering problem-based learning activities in water-related majors.

12 *Key words:* MATLAB, software development, infiltration models, empirical models, conceptual models.

Introduction

14 The learning environment for engineering majors in agricultural, civil, and environmental requires computer models

15 for better understanding of underlying principles and processes of the continuous movement of water on, above, and

below the surface of the earth. The use of computer programs allows the students to participate in hands-on

17 engineering activities. The U.S. Environmental Protection Agency (USEPA^[1]) defined a model as "*a representation*

18 *of the behavior of an object or process, often in mathematical or statistical terms.*" In using computer programs, the

19 graphical user interface (GUI) plays a vital role. A GUI^[2] is a type of user interface that uses windows, icons, and

20 menus that can be operated by a mouse rather than text commands (e.g., MS-DOS). In today's professional market,

21 the use of computer software with GUIs can speed up the users work and allow them to take advantage of running $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$

22 multiple programs of modern operating systems^[2].

1

2

3

13

23 In teaching water-related courses, the complexity of rainfall-runoff theory can be softened by using computer

24 models. A particular application case is the analysis of rainfall-runoff processes that includes calculating soil

25 infiltration rates. These infiltration rates are key to computing how much water enters the soil column and how much

water flows over the ground surface as runoff in a finite lapse of time. Infiltration is required for determination of

the so-called effective rainfall (also referred to as the rainfall excess) and consequently the direct runoff. It is

28 generally acknowledged that approximately 70 percent of annual precipitation infiltrates the soil in the continental

29 United States, and approximately 30 percent becomes streamflow^[3]. Infiltration is a useful parameter in water

30 balance calculations data and hydrology assessment of interest areas. In some cases, infiltration rates are related to

¹ Undergraduate student at Mississippi State University –Department of Computer Science and Engineering, PO BOX 3075, Mississippi State, MS 39762, <u>sec224@msstate.edu</u>

³Assistant research professor at Mississippi State University –Department of Civil and Environmental Engineering, 501 Hardy Road, office 224, Mississippi State, MS 39762, jd216@cee.msstate.edu

² Undergraduate student at National University of Colombia –Department of Civil and Agricultural Engineering, 215 Louisville Street Unit 9, Starkville, MS 39759, <u>darivast@unal.edu.co</u>

soil erosion, as well as with soil-water components including soil-moist storage, percolation and evapotranspiration.

- 32 Different authors ^{[5], [6], [7]} consider that this infiltration phenomenon is one of the most complex elements of the
- 33 hydrologic water cycle.
- 34 Several approaches to compute soil infiltration rates, such as empirical-based and physics-based models, have been
- proposed by different authors. The interpretation of the infiltration processes leads to many derivations. Empirical
- 36 models were developed over the basis of experimental data; therefore, these models do not employ physics of flow
- through porous media. Conceptual models employ physics of flow through porous media in measurable physical
- 38 properties of the soil-water system. The other infiltration models refer to empirical or conceptual models, which do
- 39 not explicitly depend on rainfall intensity^[4]. Infiltration data analysis is beneficial in multiple fields of study, such
- 40 as hydrology modeling, environmental engineering, irrigation and landscaping design.
- 41 The goal of this project was to develop a stand-alone graphical interface tool where users can select different soil
- 42 infiltration equations. Water Infiltration Calculator (WATIC) was coded using the MATLAB programming
- 43 language. The formulas that are available in WATIC are^[4]: Horton, Kostiakov, Kostiakov-Lewis, Philips, Holtan,
- 44 Overton, SCS, HEC, Snyder, Hydrograph, Philip Version, Fok Hansen Version, Li-Sterns-Simons, Hall Model,
- 45 Mein-Larson, Morel-Seytoux and Khanji, Paralange Model, Gardner Widtsoe, Kirkham Feng, Green-Ampt,
- 46 Philip Two-Parameters, Collins-George, Smith Model and the Stanford Watershed Model used in HSPF model.
- 47 These are commonly used equations in the fields of civil engineering, agricultural sciences and engineering,
- 48 environmental sciences and engineering and in geosciences fields. The end goal is to be able to easily distribute this
- 49 software, so it can be used by water resources professionals. WATIC was programmed in the MATLAB
- 50 programming language because of its efficient Graphical Users Interface (GUI) and its portability.

Methods

- 52 To develop the WATIC software, we relied heavily on the MATLAB integrated functionalities as well as scientific
- 53 literature related to soil infiltration processes and approaches. The development of WATIC, started using C++ and
- 54 Java programming. After some analysis we decided to use MATLAB computing language for several defined
- reasons. MATLAB version 10b can be deployed in a .fig and .m format that does not require the MATLAB license
- (for non commercial distribution, just the MCR compiler attached to the .exe files is necessary). Also MATLAB
 version 10b has a high portability that allows for cross-platform interaction, meaning that the software can be run in
- version 10b has a high portability that allows for cross-platform interaction, meaning that the software can be run in
 different operating systems, such as Mac OS, Linux and Microsoft. The cross-platform functionality and the license
- 58 different operating systems, such as Mac OS, Linux and Microsoft. The cross-platform functionality and the neer 59 waiver let our software reach many users, hence giving it a wider audience. Another notable factor in coding
- 60 WATIC in MATLAB is its multiple language portability, including language conversion of code written in the
- 61 MATLAB environments that can be transferred easily into C++. Hence if it is necessary for implementation
- 62 purposes to change the programming language, this could easily be achieved due to MATLAB built in features.
- 63 The graphical users interface (GUI) in WATIC was a key design element. The GUI interface was developed using
- 64 the MATLAB GUIDE function. The user would input the data into the program through the use of different input
- 65 mechanisms such as radio buttons, panel boxes, text boxes and checkboxes. The input of data would be sequential
- and transparent for the user, meaning that depending on the first choice a new set of choices would be generated. By
- 67 using this approach it would allow the user to focus on solving their particular problem without being overwhelmed
- by the numerous infiltration equations available in the WATIC software. The way that MATLAB GUIDE works is
- 69 that programmers literally draw out the GUI. Then, MATLAB automatically generates the code behind it. This is
- ro similar to the GUI system used in Netbeans for Java applications. Once the GUI has been designed, any
- 71 modification of the MATLAB code will affect the GUI. Also any modification of the GUI will affect the code.
- 72 Therefore, bi-directional programming in the code was established. This bi-directional coding was an important
- feature in the software development. Some changes are more easily done in the code than with the GUIDE on the
- GUI- also inversely many design features like the boxes sizes are more easily done on the GUIDE, instead of the
- 75 code directly.

51

- 76 A key focus of the software development was to program the software. Different approaches were taken into
- consideration such as automata-based programming, declarative programming, and concurrent programming, among
- 78 others. We were focused on four main programming paradigms: the event driven programming, the component
- based programming, the function level programming and the modular programming. After analyzing the different
- 80 programming paradigms, we decided to develop the software using a modular programming approach. The main
- reason to use modular programming was to code individual equations, and then add them to the main code. In
 WATIC, infiltration equations do not interact between them; therefore, programmers took into consideration other
- WATIC, infiltration equations do not interact between them; therefore, programmers took into consideration other
 approaches like using a code repository such as SVN, so that the code interaction would go smoother. This approach
- means that the code updates would be made visible to all of us and previous versions of the code would be available
- to programmers always. Such an approach of using repositories is used in industrial environments. The use of
- modular programming allowed skipping the use of repositories, as it has been known that small repositories in an
- academic environment tend to be a hassle because of the interworking of the push and pull functionalities. Since,
- 88 programmers individually maintain their WATIC code, once their code is fully functional they can add it to the main
- 89 component
- 90 Applications like the WATIC tool, serve to introduce more ideas for engineering applications. In that way,
- 91 MATLAB functions are usually used to deploy more programming skills for any engineering applications. Most of
- 92 programmers use MATLAB programming language to link data, as well as for computation and user interface for
- 93 different situations. An example of this is to link data sources on EXCEL such as input data for calculations, and
- 94 MATLAB for calculus and graphical interface. In addition, MATLAB can be used to import data for different
- 95 sources like java, www, *.txt (files), com and *.net.
- 96 The different compilers involved in calculations and deploying tools are usually known by programmers and can be
- 97 used for any situation. The ability of programmers to understand this capability allows them to successfully develop
- 98 tools or applications. In this case, the WATIC tool is the first step in configuring a complete tool for water resources
- 99 engineering. Modeling in hydrology is more complex with the use of infiltration equations, however, these equations
- 100 are fundamental for engineers to model the water cycle.
- 101

Results

- 102 This section is an overview of the WATIC tool and user interface platform. Figure 1 depicts the presentation screen
- 103 of the tool and the selection menu of the different water infiltration models. The user can chose among three
- 104 different kind of models, empirical, conceptual and others models.

Figure 1. Presentation of WATIC Graphical User Interface for infiltration models

- 107 Figure 2 shows the input interface for the empirical model of Kostyakov^[4]. The left picture shows the infiltration of
- Silt Loam soil with a = 4.5, b = 0.45 (a and b are constants that depends on soil characteristics), time step every 2
- 109 minutes and maximum time display calculations of 20 minutes. The picture on the right shows the same type of soil
- 110 with same value constants, but a shorter time step every 0.6 minutes. This example shows how the user can
- 111 manipulate input parameters values of coded equations in WATIC.

112

113 Figure 2.Example of Kostyakov model for a Silty Loam soil water infiltration with different time resolution.

- 114 In Figure 2, the user interface allows users to introduce parameters for the computational process. If the user doesn't
- 115 know the parameter range of coded equations, there is a help button that shows the typical constants values for
- different soils (see Figure 3 for typical values for the Kostyakov equation). These values were extracted from a
- 117 literature review of each model that included hydrology books, technical papers, manuals, etc.

iit Loam 4.5 0.45 Gravelly sandy loam 5.0 0.35 iine sand 12.0 0.40	Soil Texture	а	b
Gravelly sandy loam 5.0 0.35 ine sand 12.0 0.40	Silt Loam	4.5	0.45
ine sand 12.0 0.40	Gravelly sandy loam	5.0	0.35
	Fine sand	12.0	0.40
Clay 5.5 0.50	Clay	5.5	0.50

118

- 119
- Figure 3. Typical values table of Kostyakov empirical model of Infiltration^[9].
- 120 The WATIC tool is a GUI application of MATLAB that requires MATLAB software for execution. For users that
- don't have this software, we found a solution using the MCR compiler of MATLAB to execute the WATIC package
- in computers that do not have MATLAB, which allows execution of the tool with no legal problems for license
- 123 permission. Figure 4 shows the MCR (MATLAB Component Runtime).

124 125

Figure 4. MATLAB Component Runtime (MCR)^[8].

- 126 The executable files need to be installed following the user guide for better execution.
- 127

138

Discussion

128 Programming the .m files of infiltration equations in WATIC tool required a comprehensive literature review and

129 mathematical manipulation. Some equations like Holtan's model presented difficult mathematical interpretation in

terms of time. This model does not depend directly of time- it depends on soil to store water on a lapse of time^[1].

131 The purpose of any infiltration model is to show the infiltration rates with time for different time resolutions. In

- order to help the users, a compendium of typical input values of each infiltration equation was developed during thisinvestigation.
- 134 In general, the WATIC tool can calculate soil infiltration rates using empirical to physics-based models in an easy-
- to-use graphical user interface. The application and analysis is up to the user. One of the features of the WATIC tool
- is the option that the user can compare field test data with any model. This can help in finding the best model for a
- 137 particular study area.

Conclusions and Future Work

- 139 The WATIC tool is an engineering software application that displays in one interface many approaches for
- 140 computing water infiltration rates through the soil. The interface was developed to easily manipulate data, including
- help with typical values of each model along with tabular and graphical outputs of soil infiltration curves.
- 142 The GUI application of MATLAB combined with the MCR, resulted to be a useful combination for academic
- 143 purposes and for modeling assessment in hydrology, irrigation, landscaping, environmental engineering, etc. The
- capability of open .m files allows any person to modify the programming environment and add other components.
- 145 Future development includes:
- 146 Link models for the same type of soil
 147 Test models with observed data
- Compute statistical analysis between simulated and observed data
- Code an optimization tool that finds the best model for the observed data
- Link WATIC with geographical information systems
- 151 Improve the import and export data interface
- 152 Improve plotting options
- 153
- 154

155		Acknowledgments		
156 157 158 159	The authors would like to thank Dr. Brenda Kirkland from the Mississippi State University's Geosciences Department for providing scholarships to Samuel Camacaro and David Rivas through a National Science Foundation grant titled "Diversity Enhancement through Research Experiences (DEGReE)." Mr. Rivas was also funded by the Mississippi State University's Bagley College of Engineering and Office of Graduate School			
160		References		
161 162 163	[1]	USEPA, U.S. Environmental Protection Agency, <i>Guidance on the Development, Evaluation, and Application of Environmental Models</i> , available from: http://www.epa.gov/crem/library/cred_guidance_0309.pdf, 02-04-2012.		
164	[2]	The Linux Information Project, GUI Definition, available from: http://www.linfo.org/gui.html, 02-04-2012		
165	[3]	Chow, V. T., Handbook of Applied Hydrology, McGraw-Hill Book, New York, 1964, pg. 98,103.		
166	[4]	Singh, V. P., Hydrologic Systems: Watershed Modeling, Prentice hall, New Jersey, 1989, pg. 39, 47, 70		
167 168	[5]	Horton, R. E., 1933. "The Role of Infiltration in the Hydrologic Cycle," <i>Transactions of the American Geophysical Union</i> , 1933, 14:446-60.		
169 170	[6]	Horton, R. E., "Analysis of Runoff- Plat Experiment with Varying Infiltration Capacity," <i>Transactions of the American Geophysical Union</i> , 1939, 20:693-711.		
171 172	[7]	Cook, H. L., "The Infiltration Approach to the Calculation of Surface Runoff," <i>Transactions of the American Geophysical Union</i> , 1946, 27(5):726-47.		
173 174	[8]	Mathworks, <i>Build Standalone Executables and Software Components from MATLAB Code</i> , available from: http://www.mathworks.com/products/compiler/, 11-28-2011.		

Haan, C. T., Barfield, B. J., and Hayes, J. C., *Design Hydrology and Sedimentology for Small Catchments*,
 Academic Press, San Diego, 1994, pg. 58.