
2011 ASEE Southeast Section Conference 

Project Dynamics: Review of the Value of Systems 
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Abstract – Project failures in the Information Technology (IT) sector are well documented in the literature; 
project managers miss their target budgets and schedules more than twice as often as they meet them. Traditional 
project management methodologies initially developed for the large-scale engineering projects of the 1950’s, while 
still relevant and useful, are reductionist in nature and are therefore missing a systems approach that concentrates on 
knowledge creation before, during and after a project. This paper highlights the role of system dynamics and other 
analysis tools in augmenting a project’s control processes, as well as the skill set used by the project manager. 
Research from a wide variety of projects within the information technology sector and others, will be synthesized 
(e.g. system dynamics methodology), and will suggest the need for more robust and value added project 
management approaches. Understanding the project dynamics will illustrate the complex interactions and feedback 
structures inherent in all projects, as well as seek to educate project managers on how to handle cause-effect 
relationships through the phases of a project. Furthermore, the research will illustrate problematic project dynamics, 
using various conceptual models, and suggest the need to integrate system analysis methodologies for project 
management into traditional project management processes and bodies of knowledge instead of solely relying on 
them as a post-mortem tool for project analysis. 
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THE PROBLEM 
Current State of Project Performance 

Contemporary business processes are more complex than in decades past and resemble structures with more 
interrelationships and interdependencies. It is becoming clear that the conventional (i.e. reductionist) project 
management methods are inadequate for handling this new era of complexity. The Project Management Institute 
recognizes this trend and research is currently underway by PMI, as well as others in academia, to learn how best to 
manage complex projects [1]. Management styles and organizational structures are also following this trend towards 
complexity. Historically, managers subscribed to a Newtonian philosophy of management resembling a machine 
model predicated on linear thinking, control theory and predictability; this model is proving very difficult to tender 
in the new era of complexity [2, 3]. Some executives are even rejecting traditional organizational structures in favor 
of more complex models, like the matrix organization, or another type that Haas [1] refers to as “alliances,” whereby 
an organization creates an organizational structure comprised of complex interrelationships between suppliers, 
partners, regulatory entities, customers and sometimes even competitors. Out of the complex organizations, complex 
projects are born. 
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The project management literature over the last three decades suggests a poor performance record for complex IT 
projects; particularly with regards to software development projects [1, 2, 3, 4, 5, 6, 7]. Some of the literature 
following this trend references The CHAOS Report by the Standish Group [8] which is considered to be the most 
comprehensive, ground-breaking study to-date on information technology related project performance. Since its first 
release in 1994, the Standish Group has followed the IT industry’s performance, or lack thereof, and has regularly 
updated The CHAOS REPORT roughly every two years. 

 

Year Successful Projects Failed Projects Challenged Projects 

2008 32% 24% 44% 

2006 35% 19% 46% 

2004 29% 18% 53% 

2000 28% 23% 49% 

1998 26% 28% 44% 

1996 27% 40% 33% 

1994 16% 31% 53% 

 
Table 1: CHAOS Report for IT project performance from 1994-2008 (Standish Group 2009). 

The original report in 1994 uncovered significant failure rates for IT projects (e.g. web application development, 
software development, systems integration) and estimated that these failures cost government agencies and 
corporations $80 billion - $145 billion per year. The report features three categories of project performance – 
successful, challenged and failed. Successful projects refer to those that were delivered on time, on budget and with 
the desired scope. Challenged projects refer to those where the project was completed but was delivered late, over 
budget and without the required scope. Failed projects refer to those where the project was not completed, canceled 
or delivered something of no value to the customer. 

Software Development Projects 

Software and web application development projects are complex in nature, involving technical knowledge-work that 
does not produce the linear relationships between system variables (e.g. the relationship between number of 
developers and lines of bug-free code) often found in more tangible product production such as manufacturing and 
construction. For example, if one were to paint a house, the project’s schedule length would decrease almost linearly 
(up to a certain point) based on how many painters the project manager had for the task; this is not the case with IT 
projects and software/web application development in particular. Adding an extra developer to a project does not 
ensure that twice as many lines of bug-free code will be deployed. The complexity inherent in software 
development, and the project management practices that seek to control and improve its performance, have been 
well studied in recent decades and can be traced back as far as a report by the Comptroller General in 1979 citing the 
“software crisis” that existed in the federal government [5]. The report concluded that “the government got for its 
money less than 2 percent of the total value of the contracts”. Project performance for software development has 
improved marginally since then but it is still deficient according to the Standish Group’s Chaos report [8]. Abdel-
Hamid and Madnick [5] produced a pioneering study in an attempt to understand the systemic issues involving 
software development and produce a working quantitative model that illustrates the complex interactions and causal 
connections between variables affecting software development. 

Figure 1 illustrates a high level subsystem diagram for software development and demonstrates the key interactions 
between the planning, controlling, human resources management and software production components of any 
software development effort. Abdel-Hamid and Madnick [5] suggest that in order to get a better understanding of 
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the software development process we needed a fully integrated model that took other variables into account instead 
of the traditional practice of focusing solely on the software production subsystem.  

 
Figure 1: Fully integrated subsystem diagram for software development project dynamics (Abdel-Hamid and 
Madnick , [5]). 

The Human Resource subsystem is comprised of functions such as hiring, training and assimilation. Abdel-Hamid 
and Madnick recognized that these functions do not operate as independent and exogenous variables to the system, 
but rather as endogenous variables that both affect and are affected by the other subsystems. For example, the Work 
Force Available influences the allocation of human resources in the Software Production subsystem and both the 
Controlling subsystem and Planning subsystem have a direct affect on the Human Resource subsystem, and 
therefore the Workforce Available. 

The Planning subsystem accounts for project estimation activities that directly affect both the project schedule and 
the work force needed to develop the software. Estimates are initially produced and subsequently revised throughout 
the life-cycle of the project. These estimates create the environment in which management interventions, such as 
adding more people to the project or adjusting the project schedule, take place and can lead to some of the 
unintended and counter-intuitive project behaviors that are witnessed in complicated project environments. 

The Software Production subsystem comprises of four developmental activities: development, quality assurance, 
rework and testing. The Controlling subsystem represents those activities by which project managers track progress 
in development activities vs. the project plan and make adjustments. Unfortunately, tracking progress in software 
development is extremely difficult because the intended product (i.e. “software”) remains intangible for most of the 
development process. This makes it very difficult for both developers and the project managers to determine how far 
along the project has progressed. 

As previously mentioned, this is one of the major differences between information systems/software development 
and traditional project management control; and accounts for much of the complexity and performance problems 
associated with managing software projects. The inability to accurately measure progress directly affects the project 
manager’s ability to effectively control the project schedule, budget and performance. Abdel-Hamid and Madnick 
[5] suggest this is primarily the result of how software development projects are measured, using the surrogate 
variable, consumptions of resources, as a way to measure progress instead of a more tangible method you might see 
in manufacturing or construction. They assert that along with underestimation, this inability to precisely measure 
software project progress is one of the contributing factors in producing the 90% syndrome – a common form of 
project failure where estimates of the fraction of work completed reaches roughly 90% completion according to the 
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original project schedule, but then stalls as the task completion rate starts to decrease. In some cases the project takes 
just as long if not longer to finish the final 10% as it did to finish the first 90% . 

The 90% Syndrome in Systems/Software Development 

In the project management and software development literature, the 90% syndrome refers to a type of project failure 
where estimates of the fraction of work completed reaches roughly 90% according to the original project schedule 
but then stalls [9, 10]. Sterman concisely defines the syndrome by stating that “a project is thought to be 90% 
complete for half the total time required” [10]. In more layman’s terms, projects have an uncanny way of appearing 
to be on target and proceeding as planned until they approach their end; however, even though project management 
planning and control took place, the rate of progress stalls as the scope of the endeavor grows, the resource 
requirements increase and/or the errors made early on in the development process lead to schedule pressure, 
schedule slippage, overtime, poor product quality and potentially yet more rework. 

 
Figure 2: Classic S-shaped limits to growth representation of the 90% syndrome. Cumulative progress 
increases at a decreasing rate once the project nears 90% completion according to the original project plan 
(Ford and Sterman 2003). 

There are several reasons cited in the literature for this project phenomenon depicted in figure 2. Abdel-Hamid and 
Madnick [5] attribute it primarily to the interaction between two factors: project size (i.e. scope) underestimation 
and man-day underestimation (i.e. human resources). As one might expect, if the project scope is underestimated 
from the beginning there is a greater chance for the 90% syndrome to appear due to the characteristics surrounding 
many software development projects. Early on in the project, the ability of the project manager to effectively 
measure progress is hampered because software is mostly intangible for much of its development and progress is 
often measured by the rate of resource expenditures instead of actual accomplishments (e.g. bug-free lines of code or 
functioning software modules); this in turn creates the illusion that the project is on schedule.  

Once the project progresses into its later stages, the discrepancy between resources expenditures and completed 
tasks becomes increasingly apparent to both the project team members and the project manager. This produces a 
better appreciation for the actual amount of work left; often times the inevitable discovery and underestimation of 
rework exacerbates the syndrome, leading to a prolonged stall or outright failure [11]. Furthermore, progress can 
continue to decline as a result of ill-advised managerial responses to the schedule failure. For example, such 
“corrective actions” as adding more developers, pushing the deadline, engaging in concurrent development and/or 
requiring overtime, produce what Ford and Lyneis [12] categorize as “ripple” and “knock-on” effects. These actions 
often activate feedback dynamics, induced and exacerbated by management interventions, which can have the 
unintended consequences of producing an increase in the error rate, further reduced productivity and further delays. 
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The second factor Abdel-Hamid and Madnick [5] attribute to the syndrome is man-day underestimation. According 
to their model, the syndrome is more severe when man-day requirements are underestimated than it is when size is 
underestimated. At first this might appear to be somewhat counterintuitive; however, a closer examination of the 
case study and model results reveals that when size is underestimated the syndrome is less severe for two reasons: 1) 
because problems with the estimation of project scope tend to be detected early in the project life cycle than 
problems with labor estimates and 2) because when size is underestimated, and subsequently detected in the early 
stages of the project, underestimation of man-days requirements are often revised appropriately. Man-day 
requirements often remain undetected until late in the life cycle when the majority of the budgeted man-days have 
been consumed; this occurs because it isn’t until the later stages of a project when the budgeted man-days are 
exhausted and the team members are able to effectively perceive how productive they have actually been. Bringing 
additional resources into the project during its critical late stages (when the rework cycle starts to dominate), instead 
of earlier in the project lifecycle, increases the project’s potential for Brooks’ Law (i.e. adding resources to a late 
software projects only makes it later), as well as other supporting ripple and knock-on effects, further degrading 
schedule/project performance. 

In addition to Abdel-Hamid and Madnick’s assertions on the causes for the 90% syndrome, Ford and Sterman [11] 
also provided insights through their study of concurrent engineering projects. Concurrent engineering refers to a 
method by which certain tasks, work packages and/or project milestones are developed in parallel rather than serial 
formation. For example, in the case of software development, a project manager might choose to overlap (i.e. work 
in parallel) the design and development tasks in an effort to reduce the total schedule length of those tasks, as 
compared to working them in serial order.  

Ford and Sterman [11] developed a system dynamics model to better understand the interactions between the 
process structure of concurrent development and the project team members’ behavioral decision-making processes. 
Their model demonstrates the strength behind the system dynamics methodology; its ability to integrate managerial 
decision-making into the various physical information processes involved in any software development effort. The 
results from their research illustrate how the interaction between development processes (e.g. overlapping 
activities/task sequencing, activity durations and rework), as well as the behaviors of management and developers 
deliberately concealing rework (i.e. “the Liars Club”), creates a detrimental dynamic leading to unplanned iterations 
and a lower quality product at a higher than estimated cost [11]. They assert that concurrent engineering actually 
increases the risk of producing the 90% syndrome because it increases a project’s vulnerability to multiple iterations 
and errors, as well as actually increasing the fraction of work requiring changes or additional iterations. 

Their research outlines the “Liar’s Club” as a social/behavioral phenomenon in projects whereby project teams 
conceal rework in order to avoid the responsibility of failure, prevent blame escalation or retaliation from peers and 
to solve their own problems under cover and free from management intervention. This behavior illustrates the 
importance of considering (i.e. factoring them into models) individual and team behaviors, a practice widely used in 
system dynamics modeling, when devising policies to improve project performance in concurrent development 
projects. According to Ford and Sterman [13], “Process changes cannot improve concurrent development project 
performance if they do not also address the behaviors that drive iteration cycles such as the policy of concealing 
rework requirements.” In other words, without considering and addressing how people truly behave in socio-
technical systems, the project manager can continue in vain to tweak development processes ad infinitum, only to 
realize that the project team’s socio-cultural incentive structure continues to wreak havoc on the final project 
outcome. 

The literature referenced in this research focuses on the use of system dynamics modeling and simulation, which 
provides a better understanding of the project behaviors, such as the aforementioned 90% syndrome, as well as 
quantitative data to support the anecdotal evidence encountered by many project managers in the field. The goal for 
project managers should be to first develop a richer understanding of dynamic project behaviors, which include 
individual, management and project planning/estimation behaviors. Armed with that knowledge, they must use it to 
develop better strategies for handling project perturbations in a way that mitigates the risk of the 90% syndrome.  

These strategies should include, at a minimum, the following: 1) better estimation tools for both project size and 
man-days requirements; 2) a recognition that project estimates create project behaviors and vice versa; 3) the 
methods to also properly account for rework cycles and their critical position late in the project life-cycle, as well as 
the man-day considerations needed to effectively handle them; 4) improved methods to account for, manage and 
adjust the socio-cultural incentive structures associated with the concealment of rework (i.e. the Liar’s Club).  
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The literature suggests agile development as a methodology to increase cycle speed and mitigate the 90% 
syndrome’s risks; however, management’s communication styles/patterns, as well as their policies towards rework, 
must not institutionalize the desire to conceal problems and hide the “bad news,”. Lastly, the development and use 
of commercially available software project management simulation tools (e.g. system dynamics models) that are 
widely accessible, intuitive, extensible, and relevant must be incorporated in the decision-making process.  

Each one of these suggested strategies represents a component that must be considered in any attempt to improve the 
marginal success rate of software development and information technology projects. Simply addressing whichever 
component solution is conveniently located in close proximity has the potential to deliver minor incremental 
improvements, no improvements, or worse yet, aggravate the development process and deliver worse results than 
before. 

AUGMENTING TRADITIONAL PROJECT MANAGEMENT METHODOLOGIES USING SYSTEM    
DYNAMICS LESSONS LEARNED 
Systemic Project Dynamics in Software Development – The Dynamics of Schedule Pressure 

The occurrence of the aforementioned 90% syndrome in projects is well documented in the literature and the causes 
for the syndrome are extensive and complex in nature. While Adbel-Hamid and Madnick [5] assert that the main 
causes can be attributed to underestimation and the imprecise measurement of project progress, other studies by 
Ford and Sterman [11], Lyneis and Ford [12] and Hart [3] suggest the causes can be much wider and involve other 
factors such as the interaction between factors such as “the rework cycle” and project staffing trends throughout the 
lifecycle of the project. 

 
Figure 3: A typical development project rework cycle. Work packages move from the original work to do 
stock to the work done stock. In the process errors are discovered and sent back through the development 
process for "rework" (Lyneis and Ford 2007). 

The various behaviors, interrelationships and causal connections that typify most software and web development 
projects are illustrated in figure 3. These dynamics represent common behaviors referenced in the project 
management literature and are important learning tools for project managers. They provide a foundation for shared 
understanding of typical behaviors that can lead to poor project performance, or outright failure. Furthermore, they 
can be used by project team members to identify project pitfalls, communicate systemic issues, design and adjust 
project policies and perform elementary risk-analysis. 

 

Williams [14] and Rodrigues [15] provide a rough outline for this new methodology – the integration of dynamic 
models with traditional project management methodologies, and other areas in the literature also suggest the need to 
re-examine the use of our traditional techniques for project management in an attempt to develop better strategic, as 
well as tactical, methodologies. Many of the current operational models, while useful, are lacking in a 
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holistic/systems approach to project management; therefore, integration of system dynamics models into the entire 
project management framework, and not solely as a post-mortem analysis tool to support inter-project learning and 
knowledge dissemination, represents a novel practice in the project management field and one that could potentially 
benefit project teams as well as the organizations they support.  

 

 
Figure 4: Conceptual model of the integration of system dynamics models (SD Models) in the traditional 
project management framework. Lessons learned and modeling ‘what if” scenario results are aggregated at 
the strategic level and continuously fed into the traditional plan and control project management framework. 
Adapted from [15]. 

 

At this stage in its evolutionary development, system dynamics models applied to project management are 
predominantly used as post-mortem tools and occasionally as models used prospectively (e.g. estimation 
techniques). Progress towards this next step of integration into the entire project life cycle (see figure 4) is currently 
more of an academic exercise than a mature methodology. The literature at this point does not suggest any real-
world case of this novel approach to augmenting the project manager’s tool set. The literature does, however, 
consistently emphasize the need for new models to adapt to the ever increasing complex nature of information 
technology projects, as well as to improve the mediocre performance that continues to plague the industry.  

Figure 5 illustrates some typical casual relationships in an IT project using system dynamics methodology. The 
complex dynamics associated with projects becomes increasingly apparent and the policy decisions made by project 
managers are exposed as both cause and effect of both positive and negative feedback, as well as both increases and 
decreases in project productivity. 
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Figure 5: Conceptual model designed to illustrate typical systemic project behaviors and their causal 
connections Adapted from Sterman (2000), Lyneis and Ford (2007), Ford and Sterman (2003). 
 

The model illustrates the difficulty associated with project policy decisions and the counter-intuitive nature of those 
policy effects as they interact with an increasing amount of system variables, which in turn alter system states in a 
non-linear fashion. The conceptual model referenced in figure 5 does not account for some additional variables that 
could contribute to schedule pressure such as, aggressive deadlines set by management, overly optimistic 
assumptions of productivity and/or quality, customer interventions, satisfaction levels or increases in customer 
feature requests. 

CONCLUSION 
This area of research has just begun to tackle the project performance problem and will continue to search for new 
and improved methods for advancing the discipline. The value of system analysis methodologies to project 
management have the potential to effectively capture, communicate and strategically address project behavior issues 
using a systems approaches that integrate both "soft" and "hard" variables into the model's equations. This is 
understandably a monumental task, especially when one considers the difficulty in adjudicating the validity of 
certain measures associated with soft variables; however, to ignore this task because debates over how to quantify 
certain aspects of a project can be contentious, is myopic in its approach and one might argue less effective because 
the model deliberately ignores the "reality on the ground," and consequently, is not representative of the system's 
true behavioral elements. System analysis models (like systems dynamics technique) applied to project management 
seek to be more inclusive of a project's true reality and, therefore, should be developed and widely disseminated 
throughout the project management community. 
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