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The Design of a Fluid Meters Apparatus for the
Fluid Mechanics Laboratory

William S. Janna 1

ABSTRACT – An inexpensive yet portable device for calibrating four different flow meters in the undergraduate
fluid mechanics laboratory was designed and constructed. The apparatus contains a rotameter, a turbine-type meter, a
venturi meter, and an orifice meter. All four meters are calibrated simultaneously using a volumetric measuring tank.
Results obtained by undergraduate students are presented, and advantages of using this apparatus are described.
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INTRODUCTION
It has been known that laboratory instruction is an extremely valuable teaching tool, especially when integrated with
a lecture course. Performing an experiment develops a student’s ability to understand how equipment works, how to
make measurements, and how to analyze experimental data.

The Fluid Mechanics Laboratory appears in many curricula, and complements the fluid mechanics course itself.
Experiments are performed that parallel what is taught in the lecture course, and this practice is an excellent
pedagogical tool. One important experiment performed in the laboratory is in the calibration of a meter in a pipeline.

There are a number of meters that are used to measure flow rate in a pipeline. To calibrate each and every one
would involve weeks of work. So it is important to determine which meters to have in the laboratory, and to be able
to calibrate them in as few sessions as appropriate.

In this study, an inexpensive, portable apparatus was constructed for calibrating four different rate meters using
water as the fluid medium. The apparatus and the experiment was designed so that all four meters can be calibrated in
one laboratory session by a group of three-to-five students. This approach allows data to be  obtained on all meters
simultaneously, and it exposes the students firsthand to more than just a single meter during one effective laboratory
session.

Before performing the experiment, students are given a lecture about the four meters, and instructions on how to
operate the apparatus as well as how to obtain data. They are also told what to submit as part of their report.
Experience has shown that it is expedient to have the students submit a group report consisting of an introduction,
raw data, reduced data, sample calculation, and pertinent graphs. In this way, the students will become familiar with
meters in general, without a major expenditure of effort. Data provided in this study were obtained by students.

APPARATUS DESCRIPTION
Figure 1 is a schematic of the apparatus. It contains a 30 gallon (0.12 m3) sump tank made of plastic, and used as a
reservoir. A 3/4 hp (0.55 kW) pump takes water from this tank and moves it through a piping system. The pump
discharge line contains a rotameter, a turbine-type meter, a venturi meter, and an orifice meter. The rotameter is made
of glass by Cal-Q-Flow, with a range of 0 to 10 gpm (0 to 36 L/min). The turbine type meter is made of plastic,
and manufactured by Blue-White Industries (model F-1000-RB), and reads in LPM. The venturi meter and the orifice
meters are made of transparent Plexiglas, and manufactured by Technovate. (This company is now out of business.)
After leaving the flow line that contains the meters, the water then goes to either the sump tank, or to a plastic
volumetric measuring tank (10 gallon capacity, or 0.038 m3).

Pipe/Fitt ings

The pipe is all schedule 80 PVC, and all joints are cemented together using PVC adhesive. The flow line from the
pump to the rotameter is 3/4-nominal; and from the rotameter onward is 1-nominal.
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FIGURE 1A. SCHEMATIC OF THE FLUID METERS APPARATUS.

FIGURE 1B. FLUID METERS APPARATUS 
( 1 9 7 5 ) .

 FIGURE 1C. FLUID METERS APPARATUS 
( 2 0 1 0 ) .

The pump has threaded fittings. The turbine-type meter has flanged fittings, and the rotameter has threaded fittings.
The venturi and orifice meters are cemented to PVC couplings.

Pressure Measurement

Each meter has a pressure tap upstream and downstream of the fittings to illustrate  and measure pressure recovery.
The venturi and orifice meters have two additional pressure taps appropriately located to measure pressure drop within
each meter. The pressure taps are connected with flexible tubing to a manometer board (not shown in Figure 1A).
Manometer connections are indicated in the figure.

Frame and Mounting

The piping system is attached to a welded steel frame with U-bolts. Tanks are supported on their bottoms and with
surrounding framework. The pump is mounted on vibration isolators, which are bolted to the steel frame. The steel
frame itself is made of 1 x 1 in (2.5 x 2.5 cm) square tubing. The frame has 5 casters attached so that the entire
apparatus may be moved about.
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There are many different meters used in pipe flow. Each meter works by its ability to alter a certain physical
characteristic of the flowing fluid and then allows this alteration to be measured. The measured alteration is then
related to the flow rate. The meters used in this apparatus are the turbine type meter, the rotameter, the orifice meter,
and the venturi meter. It is possible also to install an elbow meter, a nozzle meter, a nutating disk meter, and more.
A procedure of analyzing and calibrating any number of meters in this apparatus is possible.

The Turbine-Type Meter.

The turbine-type flow meter consists of a section of pipe into which a small “turbine” has been placed. As the fluid
travels through the pipe, the turbine spins at an angular velocity that is proportional to the flow rate. After a certain
number of revolutions, a magnetic pickup sends an electrical pulse to a digital output electronic device, which gives
a direct reading of the volume flow rate. Figure 2 is a schematic of the turbine type flow meter.

rotor supported
on bearings
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turbine rotor
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flow rate

to receiver

flow
straighteners FIGURE 2. A SCHEMATIC OF A TURBINE-TYPE

FLOW METER.

The Rotameter (Variable Area Meter)

The variable area meter consists of a tapered metering tube and a float which is free to move inside. The tube is
mounted vertically with the inlet at the bottom. Fluid entering the bottom raises the float until the forces of
buoyancy, drag and gravity are balanced. As the float rises the annular flow area around the float increases. Flow rate
is indicated by the float position read against the graduated scale which is etched on the metering tube. The reading is
made usually at the widest part of the float. Figure 3 is a sketch of a rotameter.
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FIGURE 3. SCHEMATIC OF THE ROTAMETER.

The Venturi Meter

The venturi meter is constructed as shown in Figure 4. It contains a constriction known as the throat. When fluid
flows through the constriction, it experiences an increase in velocity over the upstream value. The velocity increase
is accompanied by a decrease in static pressure at the throat. The difference between upstream and throat static
pressures is then measured and related to the flow rate. The greater the flow rate, the greater the pressure drop ∆p. So
the pressure difference ∆h (= ∆p/ρg) can be found as a function of the flow rate.
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FIGURE 4. A SCHEMATIC OF THE VENTURI 
METER.

The Orifice Meter

The orifice  meter consist of an orifice plate placed into the flow. (See Figure 5). Flow moving through the orifice
plate creates a measurable pressure difference from upstream to downstream sections. The measured pressure
difference is then related to the flow rate. Like the venturi meter, the pressure difference varies with flow rate.

1 2

∆h

FIGURE 5. THE ORIFICE METER.

DATA
The pump is turned on and water flows through all four meters back to the sump tank. For one setting of the valve
just downstream of the pump, and while the water is made to flow into the volumetric measuring tank, the
following data are obtained:

Qr = volume flow rate from the rotameter
Qt = volume flow rate reading from the turbine type meter readout device
∆Hr = head loss from upstream to downstream of the rotameter
∆Ht = head loss from upstream to downstream of the turbine type meter
∆Hv = head loss from upstream to downstream of the venturi meter
∆Ho = head loss from upstream to downstream of the orifice meter
∆hv = head loss within the venturi meter
∆ho = head loss within the orifice meter
t = time required for the volumetric measuring tank to fill to a pre-determined volume

Experimental Results

The raw data obtained from the apparatus has been converted to SI units [3] and displayed in Table 1. The data shown
were obtained by students during one laboratory session. The data in the Qac column was calculated by dividing the
measured volume by time. Physical properties were obtained from [1]. Pipe dimensions may be found in [2].

A graph of volume flow rate as read from the turbine-type meter versus volume flow rate measured at the
volumetric measuring tank is required, and is shown in Figure 6. A graph of volume flow rate as read from the
rotameter versus volume flow rate measured at the volumetric measuring tank is required, and is shown in Figure
7.
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TABLE 1. REDUCED DATA OBTAINED FROM THE FLUID METERS APPARATUS.

Data
pt

Qr x 10-5

m3/s
Qt x 10-5

m3/s
∆Hr m
of H2O

∆Ht m
of H2O

∆Hv x 10-3 m
of H2O

∆Ho x 10-3 m
of H2O

∆hv x 10-3 m
of H2O

∆ho x 10-3 m
of H2O

Qac x 10-5

m3/s
1 7.57 7.57 0.15 0.085 3.4 16. 6.4 0.011 2 6.75
2 10.1 10.7 0.19 0.13 4.9 24. 11.3 0.019 9.21
3 12.6 13.2 0.26 0.19 7.9 36.6 17.7 0.033 2 11.7
4 15.1 16.4 0.344 0.30 9.8 54.3 25.4 0.047 9 13.8
5 17.7 18.9 0.451 0.411 12.8 74.7 33.2 0.068 3 17.0
6 21.5 22.7 0.649 0.625 20.7 113. 52.4 0.109 20.8
7 27.8 29.7 0.948 0.994 31.7 187. 87.5 0.186 27.1
8 32.8 35.3 1.36 1.38 46.0 272. 130. 0.276 32.2
9 35.3 37.8 1.60 1.60 50.9 310. 143. 0.310 36.0
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FIGURE 6. TURBINE METER CALIBRATION 
CURVE.
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FIGURE 7. CALIBRATION CURVE FOR THE 
ROTAMETER.

The venturi and orifice meters require a bit more analysis [4]. For the venturi meter, the hydrostatic equation
applied to the air-over-liquid manometer of Figure 4 gives the pressure drop in terms of the head loss (after
simplification):

 
p 1  - p2

 ρg
 = ∆h

By combining the continuity equation,

 Q = A1V1 = A2V2

with the Bernoulli equation,

p1

ρ  + 
V1

2

2
 = 

p2

ρ  + 
V2

2

2

and substituting from the hydrostatic equation, it can be shown after simplification that the volume flow rate
through the venturi meter is given by
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 Qth = A2 √2g∆h
1 - (D2

4/D1
4)

(1)

The preceding equation represents the theoretical volume flow rate through the venturi meter, because it is derived
from the Bernoulli equation, which does not take frictional effects into account.

 In the venturi meter, there exists small pressure losses due to viscous (or frictional) effects. Thus for any
pressure difference, the actual flow rate will be somewhat less than the theoretical value obtained with Equation 1.
For any ∆h, it is possible to define a coefficient of discharge Cv as

 Cv = 
Qac

 Qt h

For each and every measured actual flow rate through the venturi meter, it is possible to calculate a theoretical
volume flow rate, a Reynolds number, and a discharge coefficient. The Reynolds number is given by

 Re = 
V2D2

ν (2)

where V2 is the velocity at the throat of the meter, based on the actual flow rate (V2 = Qac/A2). The venturi meter

graphs are provided in Figures 8 and 9.
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FIGURE 8. VENTURI METER CALIBRATION 
CURVE.
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FIGURE 9. DISCHARGE COEFFICIENT VERSUS
THROAT REYNOLDS CURVE FOR 
THE VENTURI METER.

The analysis of the orifice meter presents another problem. The measurement of pressure downstream is at a
section that has the same diameter as the upstream location. However, there is a pressure drop, and it is usually
related to the upstream diameter and the throat diameter. Applying Bernoulli’s equation to points 1 and 2 of the
orifice meter (Figure 4) yields the same theoretical equation as that for the venturi meter, namely, Equation 1 with
the orifice diameter Do in place of D2. For any pressure difference, there will be two associated flow rates for this
meter: the theoretical flow rate (Equation 1), and the actual flow rate (measured in the laboratory Qac). The ratio of
actual to theoretical flow rate leads to the definition of a discharge coefficient: Co for the orifice meter. The orifice

meter graphs are provided in Figures 10 and 11.
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FIGURE 10. ORIFICE METER CALIBRATION 
CURVE.
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Pressure Coefficient

 Note that the venturi meter has two manometers attached to it. The “inner” manometer is used to calibrate the
meter; that is, to obtain ∆h readings used in Equation 1. The “outer” manometer is placed such that it reads the
overall pressure drop in the line due to the presence of the meter and its attachment fittings. We denote this pressure
loss as ∆H (distinctly different from ∆h for the orifice and venturi meters). This loss is also a function of flow rate.
The manometers on the turbine-type and variable area meters also give the incurred loss for each respective meter.
Thus readings of ∆H vs Qac are obtainable. In order to use these parameters to give dimensionless ratios, pressure
coefficient and Reynolds number are used. The Reynolds number is given in Equation 2 with velocity based on
downstream (of each respective meter) diameter. The pressure coefficient is defined as

 Cp =  
g∆H
1
2V2

(3)

All velocities are based on actual flow rate and pipe diameter. The pressure loss graphs are provided in Figures 12 and
13.
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CONCLUSIONS AND RECOMMENDATIONS
A switch from engineering units to SI units may be the correct thing to do academically, but many industries have
still not done so. It is therefore prudent to teach students both systems.

Plexiglas venturi meters are no longer available commercially. There are many manufacturers of this meter. It is
recommended that two be purchased; one used for experimental purposes, and the other cut in half for demonstration
purposes.

The advantage an orifice meter has over the others is that it can be made quite simply. A pipe can be cut and two
flanges attached. An orifice plate can be inserted between the flanges. Pressure taps are attached and the meter may
then be calibrated.

ASME has a very useful and practical text on venturi and orifice meters. The ASME has established construction
standards and calibration information for these meters. It is prudent to adhere to ASME specifications and
demonstrate how calibration curves can be generated for existing meters.

The apparatus described here is an extremely versatile device. It (and its predecessors) has been used for over 30 years
to demonstrate concepts associated with fluid meters.

The apparatus is portable and considered “bench-top type.” The objective of having an apparatus this size is that the
students are not overwhelmed by something much larger.

Pressure is measured with air-over-water manometers mounted on a manometer board. Although pressure transducers
might be considered a better choice, students should be exposed at some point to manometers and to how they are
used.

NOMENCLATURE
Variable Definition Dimension

A Area L2

Cp Pressure coefficient dimensionless

D Diameter L
g Acceleration due to gravity L/T2

p Pressure F/L2

Q Volume flow rate L3/T
R e Reynolds number dimensionless
t Time T
V Velocity L/T

∆H Head loss L
∆h Head loss Venturi or Orifice meter L

Greek Letters
ρ Density M/L3

ν kinematic viscosity L2/T
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