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Single Board Computer System Undergraduate 
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Abstract – Undergraduate students at Southern Polytechnic State University experience the 

system development cycle from design to fabrication in a semester length course based on single 

board computer system projects.  System guidelines are provided and students define projects in 

areas of interest.  This document describes an interesting and creative project designed and 

fabricated for Southern Polytechnic State University’s ECET Digital 3 class by Ross Pettingill, a 

recent graduate, completed as a senior student and will be discussed as an example of how computer 

systems are taught to our students.  The project was a combination of a microcontroller based system 

and analog signal processing with the overall task of determining a guitar’s frequency and actually 

turning the tuning keys of the guitar with a stepper motor. The menu driven user interface, the 

operating instructions, hardware, and software descriptions are described in the paper. 

Programming code, screen flow layout, parts list, memory map, and schematic of the design will be 

presented and discussed for educational benefit. 
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INTRODUCTION 

The task of the course was to design and build a student proposed project which must follow certain 

guidelines. Some of the guidelines include using a microcontroller, constructing the system similar to 

a larger computer’s architecture, utilizing an LCD display for user information and menu display, 

making use of a sixteen button keypad, communicating with RAM external to the microcontroller, 

and implementing speed or position control with a motor. The operation of the system is to be 

relatively user friendly, the hardware used is relatively inexpensive, and the software is designed to 

maximize precision.   

 

 

 
Figure 1. Picture of Completed Project 
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The development of the system is structured to follow a Systems Engineering Process typically used 

in industry.   Students are initially charged with a thorough requirements plan and decomposition of 

their project into functional blocks, subsystem identification and associated hardware or software 

interfaces, physical modeling and development of a test plan.  Much emphasis is placed on the 

development of a clear user interface document and a flow chart to ensure the screen flows create an 

appropriate and cohesive user interface.  Students are required to identify the parts to be used and 

layout the board(s) prior to any assembly or testing.    

 

OPERATION INSTRUCTIONS 

This section covers the system operation instructions as well as use of memory to implement an 

advanced feature used by many guitarists.  Students are required to have a useable and clear human 

machine interface that does not require detailed system knowledge for operation. 

 

Tuning a Standard Guitar 

Standard EADGBE tuning can be achieved by plugging a guitar cord into the guitar cord input jack, 

navigate through the display menus by using the keypad to select “Tune Guitar” and “Standard”. 

Next, cycle through which numbered string on the guitar you would like to tune by pressing A or B 

on the keypad (by convention, string 1 is the thinnest string closest to the floor and string 6 is the 

thickest string closest to the ceiling). Next, place the stepper motor on the tuning head of the 

applicable string. Finally, strike the individual string and wait as the system continuously measures 

and tunes your guitar. When the signal dies or the system has achieved the desired tune, the 

information screen will appear showing what the desired frequency and the measured frequency. If 

the two values are not very close, consider striking the string again and letting the system continue 

to tune the guitar. 

 

Creating a Custom Tuning 

If there is an alternate tuning preferred other than standard (standard being EADGBE), system 

memory is used for unique guitar tunings. Users can either enter the frequencies for each string or 

pluck a string and perform a frequency measurement (which stores the result in memory for future 

re-tuning).  When done, the system will ask you to name your tuning using the keypad, which is 

similar to typing a text message in a cell phone. Finally, choose a save state to store your tuning into 

system memory and choose overwrite. 

 

 

Tuning with a Custom Tuning 

After going through the creation steps, the system will retain the custom tuning frequencies in an 

EEPROM even if the system is not powered. To tune a guitar to the custom tuning, navigate the 

display menu using the keypad to “Tune Guitar” and “Custom.” Then tune the guitar following the 

LCD display instructions. 
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HARDWARE DESCRIPTION 

Semester length projects allow the students to implement mixed signal systems utilizing knowledge 

gained in other courses.  In this case, previous courses completed by the student in audio, motors, 

electronics and digital course sequences were essential. 

Amplification and Filtering 

In order to be able to accurately measure the frequency of the guitar signal in a digital system, 

numerous analog processing methods must be implemented. The techniques used include 

amplification, filtering, rectification, Schmitt triggering, and using an analog to digital converter. 

Both amplification and filtering must take place due to the fact that a guitar signal’s amplitude is 

very miniscule compared to digital ranges and the fact that guitar signals contain relatively high 

powered harmonics which give a guitar its sound1. These harmonic timings are difficult to predict 

and can seriously impede the system’s ability to measure the frequency in the time domain without 

filtering. The method of amplification and filtering is a gyrator based two band equalizer which can 

alter the boost and cut of both the upper and lower strings (standard tuning). The reason for the two 

bands of filtering as opposed to a single band pass filter is the fact that the 6th string (the low E) 

contains high powered harmonics which are within the scope of the 1st string’s (the high E) 

frequency. If a bandpass filter was implemented, either the low E string would still contain 

harmonics and would be difficult to measure, or the high E string would be filtered off and difficult to 

measure. Another advantage of the two band equalizer is that the boost and cut can be customized 

for unique guitar gains. One disadvantage of using the equalizer is that if the user wants to make a 

custom tuning with very high frequency (not typical), the high frequencies will be filtered off and 

maybe require additional gain stages. 

 

 

 

 

Figure 2. Frequency Response of the 2 Band Equalizer with Changing  Upper Band 

Potentiometer Value 

 

Figure 2 shows the frequency response of the filter as the upper band potentiometer is changed from 

fully cut to fully boost. 
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Figure 3. Two-Band Gyrator Based Equalizer Circuit 

The calculations for the maximum boost of the gyrator circuit2: 

 

Boost = Voltage Swing/Vp-pMinimum_String = 10V/62.5mV = 160V/V [44dB] 

Rin = RF = Boost*RS – RS = 160*1kΩ - 1kΩ = 159kΩ 

The center frequency for both bands were calculated by using the average frequencies of the top 

three strings and the bottom three strings: 

f1 = 365Hz 

f2 = 648Hz 

Giving each band a quality of 1, the capacitor values were calculated as follows: 

L1 = (RS * Q)/(2π*f1) = (1kΩ * 1)/(2π * 365Hz) = 436.041mH 

C1 = (L1/(R2*(R1 – R2))) = (436.041mH/( 1kΩ(100kΩ - 1kΩ))) = 4.404nF 

CA = (1/(2π*f1)^2)/L1 = (1/(2π*365Hz)^2)/436.041mH = 436.041nF 

 

L2 = (RS * Q)/(2π*f2) = (1kΩ * 1)/(2π * 648Hz) = 245.609mH 

C2 = (L2/(R2*(R1 – R2))) = (256.609mH/( 1kΩ(100kΩ - 1kΩ))) = 2.481nF 

CB = (1/(2π*f2)^2)/L2 = (1/(2π*648Hz)^2)/245.609mH = 245.609F 
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Rectification and Schmitt Triggering 

 

Half Wave Rectification was used in order to place the signal within the digital TTL logic range (0-

5V). Schmitt Triggering was used in order to transform the analog signal to digital pulses and to 

lessen the effect of harmonic distortion and noise. The half wave rectifier chosen was an active op-

amp based one which was chosen for its high speed characteristics.  The figure below shows both 

circuits. 

 

 

Figure 4. Half-Wave Rectifier and Schmitt Trigger Circuits 

 

 

The Schmitt Trigger utilized a LM324 Op-Amp for its single power supply ability such that the 

output would represent TTL logic level ranges, and thus could be read by the microcontroller. 

 

 

Figure 5. Simulated Waveforms for Half-Wave Rectifier and Schmitt Trigger 
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Figure 5 shows the simulated waveforms for the circuit in Figure 4. The blue waveform is the input 

coming from the 2-band equalizer, the green waveform is the signal after rectification, and the red 

signal is the TTL-logic digital pulses produced from the Schmitt trigger. 

 

Analog to Digital Converter 

 

 An analog to digital converter was implemented in order to sample the guitar signal and let 

the system program know whether the signal’s amplitude had decayed too far for proper 

measurement. If the signal decayed to a voltage smaller than 3V(peak), then the signal would not be 

able to produce an output of the Schmitt trigger. The ADC integrated into the microcontroller was 

used for this conversion. The maximum sampling rate of the ADC is around 75 kHz which is well 

above the suggested Nyquist sampling frequency of twice the maximum frequency. Choosing the 

ADC onboard the microcontroller had the advantage of having a lower cost, more circuit board real 

estate, and less programming space. 

 

 

H-Bridges 

 

 In order to run the stepper motor in both directions and at different speeds, two custom H-

Bridges were designed. The BJT transistors used were carefully chosen so that the required motor 

current could pass through without heat or breakdown issues, and they were also carefully chosen so 

that the controller (a GAL PLD) could provide enough current to put the transistors into saturation. 

In order for the stepper motor’s H-Bridges to share the bus, a driver needed to be placed which could 

enable to disable the H-bridges. A Programmable Logic Device was programmed to act similar to 

manufactured Stepper Motor Drivers in that it could step in both directions at different speeds, lock 

the motor in place, or de-energize the coils and save power. The Stepper Motor Driver was designed 

to work as a state machine for the transistor outputs. 

 

 

Atmel Atmega168 Microcontroller 

 

 The Atmel Atmega168 was chosen for its versatile features, 2-cycle multiplier, free C 

language compiler, and in-system programming. Among the many features it is capable of, the 

features used were the timers with the different modes of interrupts which were used for timing 

analysis, 10-bit ADC with a maximum sampling frequency of 77 kHz for measuring the guitar 

signal’s amplitude, Generic Pin Interrupt for timing analysis, and Port-Pin Change Interrupt for 

keypad processing. 
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Bus Architecture 

 

 In order to reduce the amount of pins needed, many things were placed on a common 8 bit 

bus. The devices that accessed the bus were the keypad, the stepper motor driver, the LCD, and the 

external RAM chip. Each device had an I/O Address in the system’s memory map which made use of 

a Programmable Logic Device as an address decoder and bus arbiter. This approach lends itself well 

to the instruction of computing architectures in general for the students’ benefit. 

  

 

 

Figure 6. Bus Architecture Diagram 

 

 

SOFTWARE DESCRIPTION 

This section describes the general main code flow, the algorithm for determining frequency, and 

moving the stepper motor accordingly. 

 

Main Code 

The main loop of the code is interrupt driven and will wait for user inputs determined through a 

flagging system in the keypad’s interrupt service routine, handle the system and LCD state 

accordingly, perform any tuning or EEPROM writing (if that is the current selection), and eventually 

clear the flag and continuing looping. The interrupt service routines are usually only a few lines of 

code, which include saving a single variable (such as the keypad input) and raising the interrupt 

flag. The pseudo code below shows a very simplified main loop. 
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Main Loop 

{ 

 New Key? ~> Handle Keypad 

                                   { 

Debounce(); 

 Update Text input or Command input 

                                    } 

                Handle LCD 

                        { 

    Refresh_LCDscreen(); 

... 

  Need to Measure Frequency? ~> Select String 

                                                          Wait for Guitar Signal... 

                        Measure(); 

             Run_Stepper_Motor(); 

         Need to save to EEPROM? ~> Store Guitar Frequencies 

            Store Save State Name          

    } 

} 

 

Frequency Measurement 

 

 When the program reaches the point where it is ready to measure the frequency, it will reset 

the timer value to zero and enable the interrupt coming from the processed guitar signal. When the 

first interrupt is received it starts the timer, and will not stop the timer until a predetermined 

number of oscillations have occurred. As the timer reaches its maximum value of 255, the overflow 

interrupt is accessed, and an overflow counting variable is incremented. After the predetermined 

number of oscillations has occurred, the clock will pause and the overflow count will be stored into an 

array along with the leftover time in the timer. The whole process is repeated several times in order 

to get an average number. This number is processed with simple math in order to calculate the 

average period, and thus the value is inverted and the frequency is known. All math functions utilize 

the double data type in order to receive decimal precision. The figure below shows an abstraction of 

the process. 
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Figure 10. Determining Frequency 

 

 To ensure precision, the system will repeat the measuring process until it has either 

measured the frequency 20 times or the measurement is drastically different than the first 

measurement, suggesting the signal has become tainted. 

 

Tuning With the Stepper Motor 

 

 After the frequency has been measured, an error signal is calculated and used to determine 

the number and direction of steps to minimize the error. This calculation is a simple mathematical 

product of knowing that each step of the stepper motor changes the frequency about 0.4 Hertz 

(determined experimentally) around the guitar’s typical range. Interfacing with the driver (a PLD 

state machine) is as simple as setting which direction bit to activate, and toggling a clock input. For 

higher torque needs, a frequency of 25Hz was chosen as the stepping frequency. 
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CONCLUSION 

On demonstration day, the system was running very satisfactory and the student could orally 

describe accurately and concisely the user interface and key functional blocks as guitars were 

actively tuned. Every aspect of the project worked with the exception of EEPROM saving the user’s 

floating point precision frequencies. The tuner was able to determine frequency with 0.1Hz precision, 

a precision that only well trained musicians can hear. Improvements to the gyrator based equalizer 

Q that could effectively eliminate all the harmonics was identified as a potential improvement to the 

system frequency precision. Also, the stepper motor had a stepping resolution that approximately 

equaled 0.4Hz in guitar frequency, which is still agreeably pleasant to the ears. This feature could be 

improved by upgrading the stepper motor driver to achieve half-stepping, a feat that the GAL22V10 

did not have enough hardware to perform. 

 

Student summary of learning: “ The project was able to satisfy every class requirement given, and in 

making it has not only enhanced my digital knowledge, but also my analog processing skills, my 

understanding of computer architecture, and my appreciation for the power of microcontrollers.” 

Professor summary of learning: Project met all requirements and by following the systems 

engineering approach to the planning and documentation the student enhanced his organizational 

skills and created a great project document to use during job interviews that displayed his technical 

breadth and depth. The tradeoffs of filtering and frequency counting musical signals, in this case 

guitar strings, was a particularly interesting application to reinforce many concepts taught is other 

courses.  This project exceeded requirements by fabrication of a through hold board for the 

construction of the system and much was learned about board layout and some of the board layout 

software tools which are typically used in industry.  Mr. Pettingill is now leading microcontroller 

projects in industry shortly after his graduation from SPSU. 
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