Amy Kindschi, Patrick Eagan, Paul Ross

HOTS for Independent Reading and Research ASEE June 2008

Challenges: Higher Order Thinking Skills online!

- Online environment
- Working engineers
- Unfamiliarity with libraries
- Proving value of secondary research

Story: Interdisciplinary

Mechanical engineer needs to learn about electric drives. Choice of motors.

What will fit?

Engineer is moved to a new department. Needs to understand U.S. regulations concerning x-ray machines.

Manager is required by Dept of Energy to write a Cost Risk Analysis for construction of new laboratory.

Student needs to work closely with German companies

German Language School TREFF PUNKT

Story: Management issues

Employee Training, Knowledge Management, Employee Retention

About 15 years of cooperation....

Technical Communication Program

Kurt F Wendt Engineering Library

College of Engineering

MEPP: Masters of Engineering in Professional practice

Year 1 - Summer	Year 1 – Fall	Year 1 – Spring	Year 2 – Summer	Year 2 – Fall	Year 2 – Spring
Network Skills	Engineering Economic Analysis and Management 3 credits	Engineering Problem Solving with Computers 3 credits	Independent Reading and Research in Applied Engineering 1 credit	Engineering Applications of Statistics 3 credits	Quality Engineering and Quality Management 3 credits
First Summer Residency on the UW-Madison Campus	Technical Project Management	Communicating Technical Information	Second Summer Residency on the UW- Madison Campus	International Engineering Strategies and Operations	Engineering and Business Data Communication and the Virtual Office
	3 credits	3 credits		3 credits	3 credits

Engineering programs must demonstrate that their students attain:

- (a) an ability to apply knowledge of mathematics, science, and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multi-disciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern

engineering tools necessary for engineering practice.

Using Bloom's Taxonomy to assess IRRAE work...

	Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation
01 IRRAE Project Proposal	Include facts about a problem to be solved	Discuss and describe the problem	Demon- strate or illustrate the expected use of the proposed solution.	Categorize and review possible implications of the proposed solution.	Plan a unified approach to solution (timeline, budget, personnel).	Assess likely level of success; predict value of proposed solution.
02 IRRAE Literature Review	Use research to discover the facts of the state-of-the- art.	Discuss related research, show relation-ships, and review the relative completeness of the information.	Apply the research to the problem; indicate what is useful and what is not.	Interpret and arrange your discussion to effectively deal with the topic.	Combine different ideas and research information to provide a clear and coherent summary	Draw conclusions as to what parts of the problems have or have not been solved. Recommend next steps.

Expectations and assessment – first two assignments

Using Bloom's Taxonomy to assess IRRAE work...

	Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation
03 IRRAE Project Document (Draft) 04 IRRAE Project Document (Final)	Establish an effective factual basis for project (good research completed). Include facts about a problem to be solved	Discuss and relate the research, explain connections between elements of research and the problem. Discuss and describe the problem	Apply facts and research to the identified problem; show effective problem solving for the project. Demonstrate or illustrate the expected use of the proposed solution.	Identify and relate components of the problems and elements of the research; establish relevance Categorize and review possible implications of the proposed solution.	Assemble, organize, and present elements of the problem and details of research to demonstrate a coherent and complete solution.	Assess significance of your work, likely impact, recommend next steps, note any prospective problems or future issues

Expectations and assessment – final assignments

Story: When information literacy skills are revved up

Motorcycle engineer needs to study motorcycle windshields in wind tunnels.

www.motorcyclecruiser.com

Advice to other librarians

- Win them over with a mini literature search
 - Show them this is an effective way to get things done.
 - Not used to reading how someone else solved a problem
- Document Delivery
 - Unfamiliar with a free service. Too good to be true.
- Support them
 - Any problem you have come to me.
 - Convince them that you like to get lots of questions.
- Repeat yourself. Re-explain
 - Some people don't hear you until they are in the middle of a problem.

Why it's worth the extra effort...

- Distance students ask questions that help improve services for everyone.
- Working engineers are solving real and difficult problems.
 - Tests the library resources and librarians' skills.
- Proven success of program
 - Students develop information literacy skills
 - Students want to use library resources after graduation.

Evaluation

- Overall continued increase in perceived "value"
- Specific comment from summer 2007 (survey results):

improved research skills considerably	agree 50%	strongly agree 50%
improved communication skills	agree 50%	strongly agree 39%
what I learned will be usefulnow: in the future:		strongly agree 39% strongly agree 39%
library databases were valuable	agree 44%	strongly agree 56%

Here's what we heard

Motorcycle Engineer

THANKS TO:

Patrick Fagan & Paul Ross - IRRAF Instructors Amy Kindschi & Jennifer Nowak-Velasco - Library Queens Pradeep Rohatgi & Ryoichi Amano - Faculty Reviewers MEPP Class of 2007 - Best Cohort on Earth

