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Abstract
The Purdue Spatial Visualization Test: Visualization of Rotations (PVST: R) is a widely used 

assessment of spatial ability. This paper investigated the factor structure of the PSVT: R through 

confirmatory factor analysis with data from 335 engineering design graphics students enrolled in 

an introductory course. A hypothesized one-factor model and alternative models were examined.   

Introduction
This research is an extension of (Ernst, Williams, Clark & Kelly, 2016). exploratory factor 

analysis of the PSVT: R. The researchers found that data from engineering design graphics 

students was not favorable to a robust one factor solution and that the data could conceivably 

support a wide variety of solutions from one to three factors. This suggested that not all of the 

items were indispensable for the one-factor construct that the test asserts to measure. This study 

employed the structural equation modeling (SEM) technique of confirmatory factor analysis to 

examine the unidimensionality of the PSVT: R through the examination of a hypothesized one-

factor model with all 30 test items. In addition, model respecification was employed to determine 

if there were alternative one-factor models using fewer PSVT: R items that might provide a better

model-fit.
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Methods 

Participants   
The participants were 335 students enrolled in introductory engineering design graphics

classes. The participants were predominately male (79.1%) and White (75.2%). The majority of 

the participants (88%) were between 18-21 years old.  The mean grade point average for the group 

was 3.31 (SD = .51).

Procedures 
Data were analyzed using SPSS 24 and AMOS 7.0. A hypothesized one-factor model where 

the 30 PSVT: R items formed one factor and three additional one-factor models were examined. In 

this study the goodness-of-fit of the proposed models was examined with model-fit indices that are 

prevalent in the literature. We examined the likelihood-ratio chi- 2), the root mean 

square error of approximation (RMSEA; Browne & Cudeck, 1993), the standardized root mean 

square residual (SRMR), the Tucker Lewis index (TLI: Tucker & Lewis, 1973) and the 

comparative fit index (CFI; Bentler, 1990).

Nonsignificant chi-square probability values larger than the .05 level are deemed acceptable. 

Values of less than .05 for the RMSEA are generally accepted and values as high as .08 can be 

considered as reasonable (Browne & Cudeck, 1993; Kline, 2011).  Accepted values for the SRMR 

range from .05 or less (Byrne, 2010) to .08 or less (Hu & Bentler, 1999). Accepted values for the 

TLI and CFI vary from .90 or higher (Bentler & Bonett, 1980) to .95 or higher (Byrne, 2010; Hu 

& Bentler, 1999; Kline, 2011) to .97 or greater (Schermelleh-Engel, Moosbrugger, & Muller, 

2003). For the purposes of this study, any value above .90 was deemed acceptable.   

Results
Table 1 illustrates the model-fit indices for all tested models as well as the fit indices from 

Maeda and Yoon (2011) and Maeda, Yoon, Kim-Kang, and Imbrie (2013). In the hypothesized 

one-factor model, all pathways in the model were statistically significant at the p < .05 level.  

However, the data did not produce acceptable levels of model-fit across all of the fit indices.  The 

SRMR and RMSEA values fell within the acceptable range, while the TLI and CFI values were 

not acceptable.  These finding were in contrast to two other studies which supported a one-factor 

model across all fit indices with the exception of the chi-square statistic (Maeda & Yoon, 2011; 

Maeda Yoon, Kim-Kang, & Imbrie, 2013). 

Because of the discrepancy, the researchers used modification indices provided by AMOS to 

respecify the model in an attempt to fit the data to the hypothesized model. The modification 

indices indicated that 23 error terms should be correlated. Once correlated, the data for the

respecified model produced measures of model-fit that were deemed acceptable across all fit 

indices with the exception of the chi-square statistic.  All pathways in the model were statistically 



significant at the p < .05 level.  While these results were similar to Maeda and Yoon (2011) and 

Maeda et al. (2013), the analysis violated the a priori model specification assumptions for SEM 

and lacked the theoretical justification for correlating the error terms (Hermida, 2015).

In addition, data for some variables were highly skewed and not normally distributed. 

Normality of data is a basic assumption for SEM analysis (Byrne, 2010). Because many of the 

items were skewed, additional one-factor models were examined that eliminated items with high 

skew scores.  A 15 item one-factor model that eliminated scores with a skew value of two or 

higher yielded acceptable model-fit across all the fit indices with the exception of the chi-square 

statistic. In this model all pathways were statistically significant at the p < .05 level.  A 10 item 

one-factor model in which all items with a skew value higher than 1.5 were eliminated yielding

acceptable model-fit across all indices including the chi-square statistic. All pathways in the model 

were statistically significant at the p < .05 level.  

Table 1.  Model fit indices.
Factor Model df 2 p RSMEA SRMR CFI TLI
Models in Literature
Maeda & Yoon (2011) 
One Factor Model 30 
Items 

405 670.01 <. .001 .033 ** .924 .918

Maeda, Yoon, Kim-
Kang, & Imbrie 
(2013) One Factor 
Model 30 Items

405 1623.06 < .001 .035 ** .928 .923

Models Examined 
Model 1.Hypothesized 
One Factor 30 Items 

405 866.42 .000 .058 (.053-.064) .065 .656 .630

Model 2. One Factor 
30 Items with Error 
Terms Correlated 

382 444.74 .015 .022 (.011-.031) .047 .953 .947

Model 3. One Factor 
15 Items 

90 126.84 .006 .035 (.019-.048) .046 .928 .916

Model 4 One Factor 
10 Items 

35 44.50 .130 .029 (.000-.051) .039 .963 .971

Note. ** Not reported; RMSEA = Root Mean Square Error of Approximation with 90% 
confidence interval in parentheses; SRMR = Standardized Root Mean Square Residual; CFI = 
Comparative Fit Index;  TLI = Tucker-Lewis Index

Conclusions
The hypothesized one-factor model did not produce an acceptable level of model fit across 

all the model-fit indices. Modifications to the hypothesized model based on AMOS modification 

indices produced a model that met all model-fit criterion with the exception of the chi-square 

statistic.  However, the formulation of this model involved the correlation of 23 error terms 

without theoretical justification which can be problematic in SEM (Hermida, 2015).  The 

researchers deemed this model unacceptable due to the extreme number of pathway modifications.  
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Another confounding issue was the non-normal distribution of some item scores. Some of the 

data were skewed. Since SEM relies on normally distributed data, these items were systemically 

eliminated in two additional one-factor models: a 15 item one-factor model contained items with 

skew less than 2 and the 10 item one-factor model contained items with skew less than 1.5. In the

10 item model all model-fit indices were acceptable. This finding suggested that a PSVT: R with

fewer items can achieve a one-factor structure with data from engineering design graphics students

and that is statistically significantly correlated with grade point average (p = .03).   
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